Perbandingan Metode K-Nearest Neighbour (KNN) Dan Support Vector Machine (SVM) Dalam Identifikasi Pola Motif Batik Menggunakan Ekstraksi Fitur Radially Averaged Power Spectrum Value (RAPSV)

Sari, Anita (2023) Perbandingan Metode K-Nearest Neighbour (KNN) Dan Support Vector Machine (SVM) Dalam Identifikasi Pola Motif Batik Menggunakan Ekstraksi Fitur Radially Averaged Power Spectrum Value (RAPSV). undergraduate thesis, Universitas Muhammadiyah Gresik.

[img]
Preview
Text
2023_TA_INF_190602079_LEMBAR KEASLIAN.pdf

Download (187kB) | Preview
[img]
Preview
Text
2023_TA_INF_190602079_HALAMAN PENGESAHAN.pdf

Download (186kB) | Preview
[img]
Preview
Text
2023_TA_INF_190602079_LEMBAR PERSETUJUAN.pdf

Download (144kB) | Preview
[img]
Preview
Text
2023_TA_INF_190602079_HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS.pdf

Download (132kB) | Preview
[img]
Preview
Text
2023_TA_INF_190602079_HALAMAN JUDUL.pdf

Download (173kB) | Preview
[img]
Preview
Text
2023_TA_INF_190602079_BAB 1.pdf

Download (403kB) | Preview
[img]
Preview
Text
2023_TA_INF_190602079_BAB 2.pdf

Download (781kB) | Preview
[img]
Preview
Text
2023_TA_INF_190602079_BAB 3.pdf

Download (1MB) | Preview
[img] Text
2023_TA_INF_190602079_BAB 4.pdf
Restricted to Repository staff only

Download (1MB)
[img]
Preview
Text
2023_TA_INF_190602079_BAB 5.pdf

Download (375kB) | Preview
[img]
Preview
Text
2023_TA_INF_190602079_DAFTAR PUSTAKA.pdf

Download (123kB) | Preview
[img]
Preview
Text
2023_TA_INF_190602079_LAMPIRAN.pdf

Download (887kB) | Preview

Abstract

Batik merupakan salah satu kesenian budaya yang ada di Indonesia, warisan budaya yang diturunkan secara turun temurun dari nenek moyang. Batik adalah hasil cipta karya seni luhur yang diwujudkan dalam pola kain untuk pakaian, sarung, kain pajang dan kain hias lainnya. Sejak dulu batik sudah dikenal dan dikembangkan oleh masyarakat Indonesia. Banyak daerah di Indonesia mempunyai pola motif batik yang berbeda sesuai dengan ciri khas daerah masing-masing. Penelitian ini bertujuan untuk mengenali pola motif batik yang ada didaerah jawa. Motif batik yang akan dideteksi adalah Kawung, Megamendung, Parang, Tambal dan Truntum. Adapun pengenalan motif batik ini didasarkan pada tekstur yang terbentuk pada pola motif masing-masing. Metode yang digunakan adalah Radially Averaged Power Spectrum Value (RAPSV) sebagai ekstraksi fiturnya. Penelitian ini memberikan pengenalan pola motif batik dengan hasil akurasi tertinggi 66.66% dengan menggunakan mesin pembelajaran K-Nearest Neighbour (KNN) dengan k=1 dan mesin pembelajaran Support Vector Machine (SVM) sebesar 26.66%.

Item Type: Thesis (undergraduate)
Uncontrolled Keywords: Batik, KNN, Motive, RAPSV, SVM
Subjects: Engineering > Informatics Engineering
Engineering
Divisions: Faculty of Engineering > Informatics Engineering Study Program
Depositing User: Anita Sari
Date Deposited: 26 Apr 2024 02:17
Last Modified: 26 Apr 2024 02:17
URI: http://eprints.umg.ac.id/id/eprint/10219

Actions (login required)

View Item View Item