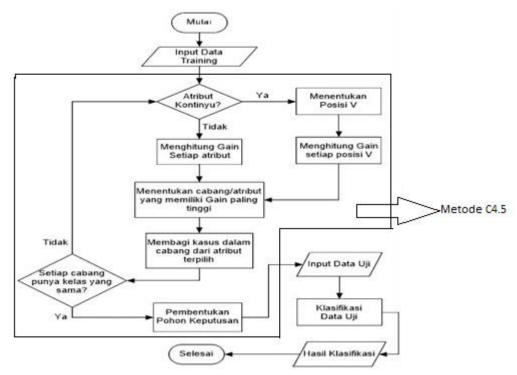
BAB III

ANALISIS DAN PERANCANGAN SISTEM

3.1 Analisis Sistem

Analisis Sistem adalah penguraian suatu sistem yang utuh ke dalam bagian-bagian komponen nya yang bertujuan untuk mengidentifikasi dan menganalisa permasalahan, kesempatan, hambatan yang terjadi dan kebutuhan yang diharapkan sehingga dapat diusulkan perbaikannya. Berdasarkan pengamatan di lapangan, dalam pemberian dana pinjaman. Koperasi Wanita "Harum Manis" saat ini hanya melihat dari aspek gaji untuk menentukan kelancaran pembayaran. Sedangkan kita tidak selalu tahu kebutuhan seseorang sehingga dapat terjadi kekeliruan. Hal ini dapat mempengaruhi realisasi pinjaman atau perputaran uang terhadap anggota yang lain.


Hasil dari prediksi untuk menentukan lancar atau macet dalam pembayaran pinjaman yang nantinya dapat di jadihkan acuan untuk memberikan dana pinjaman pada calon anggota koperasi.

3.2 Hasil Analisis

Proses prediksi dilakukan dengan menerapkan teknik data mining menggunakan metode *Decision Tree* C4.5. Teknik tersebut menggunakan 102 data anggota koperasi yang diperoleh koperasi wanita harum manis desa sirnoboyo penelitian dengan menggunakan variable status rumah, status pernikahan, umur, penghasilan. Proses prediksi yang dibangun akan menghasilkan data keluaran yang *informativ* berupa hasil prediksi berupa lancar atau macet dalam pembayaran yang akan menjadikan pertimbangan untuk pemberian dana pinjaman. Dengan penggunaan metode *Decision Tree C4.5* diharapkan sistem yang akan dibuat mampu memperediksi pihak koperasi dalam menentukan calon anggota koperasi simpan pinjam.

Decision Tree (Pohon Keputusan) memiliki kelebihan dapat mengubah fakta yang sangat besar menjadi pohon keputusan yang merepresentasikan aturan. Aturan dapat dengan mudah dipahami dengan bahasa alami. Decision Tree

mempunyai beberapa algoritma salah satunya adalah C4.5. Algoritma C4.5 merupakan algoritma paling popular dibandingkan dengan algoritma lain pada kelompok *Decision Tree*, selain itu algoritma C4.5 memiliki tingkat akurasi yang dapat diterima. Algoritma ini selain dapat menangani atribut bertipe kategorikal dan juga dapat menangani atribut bertipe numerik. Gambar 3.1 akan menjelaskan alur sistem pendukung keputusan pemberian kelayakan pengajuan kredit sepeda motor menggunakan metode *Decision Tree C4.5*. Algoritma C4.5 merujuk pada gambar 2.2. (Eko Prasetyo, 2014)

Gambar 3.1 *Flowchart* prediksi kelancaran pembayaran pinjaman pada koperasi Penjelasan pada gambar 3.1:

- 1. Pertama memasukkan data training yang akan disimpan didalam *database*.
- 2. Apakah atribut dari data training bertipe kontinyu (numerik)?
- 3. Jika atribut dari data training bertipe kontinyu maka menentukan posisi V, setelah itu menghitung gain setiap posisi V.
- 4. Jika atribut dari data training bertipe kategorikal / tidak kontinyu maka menghitung Gain setiap atribut.

- 5. Dari hasil perhitungan gain bertipe kontinyu maupun kategorikal lalu dilakukan penentuan cabang / atribut yang memiliki gain paling tinggi.
- 6. Pembagian kasus dalam cabang dari atribut terpilih.
- 7. Apakah setiap cabang punya kelas yang sama?
- 8. Jika setiap cabang punya kelas yang berbeda maka dilakukan perhitungan kembali ke point no 2.
- 9. Jika setiap cabang punya kelas yang sama maka menghasilkan pembentukan pohon keputusan.
- 10. Selanjutnya memasukkan data uji.
- 11. Sistem melakukan klasifikasi data uji dengan menggunakan pohon keputusan yang sudah terbentuk.
- 12. Sistem mengeluarkan *output* hasil klasifikasi.

3.3 Representasi Model

Data yang akan diproses untuk menentukan kelancaran pembayaran anggota koperasi, diperoleh dari data anggota peminjam Koperasi Wanita Harum Manis Desa Sirnoboyo. Sebelum dilakukan proses klasifikasi maka data tersebut harus melalui tahap *preprocesing*.

Berikut ini data anggota peminjam yang diperoleh dari Koperasi Wanita Harum Manis Desa Sirnoboyo disajikan pada tabel 3.1.

Tabel 3.1 Data Pinjaman Anggota koperasi

Nama Field	Keterangan
Nama	Nama Anggota Koperasi
Jangka Waktu	Jangka Waktu Pembayaran 10 bulan
Alamat	Alamat Anggota Koperasi
Umur	Umur Anggota Koperasi
Status	Status Pernikahan Anggota Koperasi
Status Rumah	Status Rumah Anggota Koperasi
Pengasilan Perbulan	Pengasilan Anggota Koperasi

Dari data-data tersebut yang dipilih untuk dijadikan sebagai atribut adalah pengasilan, umur, status pernikahan dan status rumah Nilai atribut-atribut tersebut

memiliki tipe kategorikal dan numerik serta bertipe kategorikal, rinciannya disajikan pada tabel 3.2.

Tabel 3.2 Data Atribut

Atribut	Tipe	
Pengasilan	Penghasilan Setiap Anggota per Bulan	Numerik
Umur	Umur Anggota Koperasi	Numerik
Status pernikahan	Single, Menikah dan Janda	Kategorikal
Status rumah	Rumah sendiri, kontrak	Kategorikal
Kelas	Lancar dan Macet Pembayaran Pinjaman	Kategorikal

Dari 228 data anggota koperasi, data tersebut diambil 30 % yang akan dijadikan sebagai data uji dan 70 % akan menjadi data latih. Jadi jumlah pembagiannya adalah 161 data sebagai data latih dan 69 data untuk data uji. Sedangkan dalam Bab 3 ini penulis menggunakan 30 data latih dan 5 data uji sebagai contoh penghitungan prediksi kelancaran pembayaran menggunakan metode *Decision Tree C4.5*. Data latih berfungsi untuk pembentukan pohon keputusan sedangkan data uji adalah data untuk pengujian sistem. Kemudian dalam pengujian sistem nanti data akan *diupdate* menjadi 228 data. Data latih yang sudah dilakukan proses *preprocessing* disajikan pada tabel 3.3. Sedangkan data uji yang digunakan disajikan pada tabel 3.4.

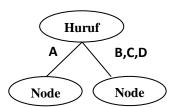
Tabel 3.3 Data latih setelah di-preprocesing

No	Nama	Status Pernikahan	Status Rumah	Penghasilan	Umur	Status
1	Mus	menikah	Rumah sendiri	1.800.000	54	Lancar
2	Umu	menikah	Rumah sendiri	3.500.000	39	Lancar
3	Reni	menikah	Rumah sendiri	3.000.000	45	Lancar
4	Nur	Janda	Rumah sendiri	1.000.000	40	Lancar
5	Ponik	menikah	Kontrak	2.500.000	41	Macet
6	Sunar	menikah	Rumah sendiri	1.800.000	36	Macet
7	Muslik	menikah	Rumah sendiri	2.000.000	55	Macet
8	Suhar	Janda	Kontrak	3.100.000	49	Macet
9	Astuti	Janda	Rumah sendiri	1.700.000	54	Macet
10	Win	menikah	Rumah sendiri	2.000.000	36	Macet
11	Setri	menikah	Rumah sendiri	2.700.000	44	Lancar
12	Sri	menikah	Rumah sendiri	4.000.000	47	Lancar

Lanjutan Tabel 3.3 Data latih setelah di-preprocesing

No	Nama	Status Pernikahan	Status Rumah	Penghasilan	Umur	Status
13	Suharti	menikah	Kontrak	2.800.000	52	Lancar
14	Kaseh	menikah	Rumah sendiri	1.800.000	46	Lancar
15	Eti	menikah	Rumah sendiri	1.500.000	40	Lancar
16	Las	menikah	Rumah sendiri	1.000.000	60	Macet
17	Sipah	menikah	Rumah sendiri	1.000.000	54	Macet
18	Umuh	menikah	Rumah sendiri	2.000.000	49	Lancar
19	Lilik	menikah	Rumah sendiri	1.500.000	37	Lancar
20	Sundari	menikah	Rumah sendiri	2.700.000	36	Macet
21	Yuniarti	menikah	Rumah sendiri	2.700.000	35	Lancar
22	Munta	Janda	Rumah sendiri	1.000.000	51	Macet
23	Yayuk	menikah	Rumah sendiri	2.500.000	54	Lancar
24	Pia	menikah	Rumah sendiri	2.000.000	55	Lancar
25	Patona	menikah	Rumah sendiri	3.000.000	25	Lancar
26	Muniro	menikah	Rumah sendiri	2.000.000	50	Macet
27	Isnu	menikah	Rumah sendiri	1.000.000	54	Macet
28	Alima	menikah	Rumah sendiri	1.000.000	60	Macet
29	Lua	menikah	Rumah sendiri	1.000.000	60	Macet
30	Amina	menikah	Rumah sendiri	1.500.000	38	Macet

Tabel 3.4 Data uji setelah di-preprocesing


No	Nama	Penghasila n	Status Pernikahan	Status Rumah	Umur	Status
1	Muslimah	1.800.000	menikah	Rumah sendiri	54	Lancar
2	Muslikah	2.000.000	menikah	Rumah sendiri	55	Macet
3	Astutik	1.700.000	janda	Rumah sendiri	54	Macet
4	Muawanah	3.000.000	janda	janda Rumah sendiri		Lancar
5	Lami	2.700.000	menikah	Rumah sendiri	50	Lancar

3.4 Perhitungan Decision Tree C4.5

Perhitungan *Decision Tree C4.5* ini akan menggunakan data pada tabel 3.3 (data latih). Tabel tersebut akan diubah menjadi sebuah *tree*.

Sebelum melakukan perhitungan, berikut akan dijelaskan beberapa ketentuan dalam pembentukan *tree* pada kasus ini.

- Perhitungan node akan dilakukan jika terdapat minimal 4 data, jika jumlah datanya dibawah 4 maka akan menjadi daun dengan nilai jumlah kelas yang paling banyak. Jika jumlahnya sama, maka pilih salah satu nilai.
- Posisi v yang digunakan pada atribut penghasilan adalah nilai antara {1.000.000, 2.000.000, 3.000.000}.
- Posisi v yang digunakan pada atribut umur adalah nilai antara {35,40,45}.
- Pemecahan cabang dilakukan secara biner yaitu pemecahan yang hanya mempunyai dua nilai dan jika nilai atribut lebih dari tiga, maka pemecahan dilakukan dengan pembagian satu nilai atribut dengan sisa nilai atribut. Contohnya atribut Huruf memiliki nilai atribut {A,B,C,D} maka pilihan percabangannya adalah {(A)(B,C,D)}, {(B)(A,C,D)}, {(C)(A,B,D)}, {(D)(A,B,C)}. Gambar 3.3 adalah contoh percabangannya.

Gambar 3.2 Contoh percabangan biner

Langkah pertama adalah memilih atribut yang akan dijadikan akar (*root node*) dengan menghitung nilai *gain* yang paling tinggi. Sebelumnya yang akan dihitung adalah nilai *entropy* semua data. Perhitungan entropy semua data mengacu pada rumus (2.2). Berikut adalah perhitungan *entropy* semua data.

$$Entropy(S) = -\frac{x}{n} * log_{2}\left(\frac{x}{n}\right) - \frac{y}{n} * log_{2}\left(\frac{y}{n}\right)$$

$$Entropy(S) = -\frac{15}{30} * log_{2}\left(\frac{15}{30}\right) - \frac{15}{30} * log_{2}\left(\frac{15}{30}\right)$$

$$= 0.5 + 0.5 = 1$$

Setelah menghitung *entropy* kemudian menghitung nilai *gain* setiap atribut. Perhitungan *gain* setiap atribut mengacu pada rumus (2.1). Berikut adalah perhitungan nilai *gain* untuk atribut status pernikahan.

$$Gain(A) = Entropy(S) - \sum_{i=1}^{n} \frac{|S_i|}{|S|} * Entropy(S_i)$$

Entropy (Si) = perhitungan entropy menggunakan partisi atribut kriteria

$$Gain(status\ pernikahan) = 1 - \left(\frac{26}{30} * \left(-\frac{14}{26} * log_2\left(\frac{14}{26}\right) - \frac{12}{26} * log_2\left(\frac{12}{26}\right)\right) + \frac{4}{30} * \left(-\frac{1}{4} * log_2\left(\frac{1}{4}\right) - \frac{3}{4} * log_2\left(\frac{3}{4}\right)\right)$$

$$= 1 - (0,8632 + 0,1081333)$$

$$= 1 - 0,9713333 = 0,286667$$

Perhitungan atribut bertipe numerik dihitung pada nilai perbandingan yang berbeda, untuk atribut penghasilan V={1.000.000,2.000.000,3.000.000} dan atribut umur V={35,40,45}. Nilai V pada atribut penghasilan dan umur diperoleh dari isi data training yang diambil. Hasil perhitungan atribut penghasilan disajikan pada tabel 3.5, hasil perhitungan atribut umur disajikan pada tabel 3.6, perhitungan setiap atribut bertipe kategorikal disajikan pada tabel 3.7.

Tabel 3.5 Hasil perhitungan *gain* atribut Penghasilan

	1.000	1.000.000		2.000.000		0.000
Penghasilan	≤	>	<u>≤</u>	>	≤	>
Lancar	1	14	8	7	15	2
Macet	7	8	13	2	15	1
Jumlah	8	22	21	9	30	3
Entropy	0.554	0.946	0.959	0.764	1.00	0.918
Gain	0.1	26	0.100		0.0	92

35 40 45 Umur ≤ ≤ ≤ Lancar 2 12 6 10 4 Macet 11 10 4 10 8 8 Jumlah 13 22 **10 17 18 12**

0.994

Entropy

Gain

0.619

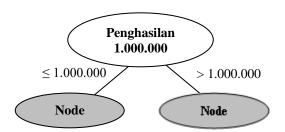
0.003

Tabel 3.6 Hasil perhitungan *gain* atribut umur

Tabel 3.7 Hasil perhitungan *gain* atribut tipe kategorikal

		Jumlah	Lancar	Macet	Entropy	Gain
Total						
Status	Menikah	26	14	12	0.996	0.29
Pernikahan	Janda	4	1	3	0.811	
Status	Sendiri	27	14	13	0.999	0.009
Rumah	Kontrak	3	1	2	0.918	

0.971


0.122

0.977

0.991

0.083

0.918

Gambar 3.3 Hasil pembentukan cabang pada node akar

Tabel 3.8 Data pada kasus Pengasilan ≤1.000.000

No	Nama	Status Pernikahan	Status Rumah	Penghasilan	Umur	Status
1	Nur	Janda	Rumah sendiri	1.000.000	40	Lancar
2	Las	Menikah	Rumah sendiri	1.000.000	60	Macet
3	Sipah	Menikah	Rumah sendiri	1.000.000	54	Macet
4	Munta	Janda	Rumah sendiri	1.000.000	51	Macet

Lanjutan Tabel 3.8 Data pada kasus Pengasilan \leq 1.000.000

No	Nama	Status	Status	Danghagilan		Status	
NO	Nama	Pernikahan	Rumah	Penghasilan	Umur	Status	
5	Isnu	Menikah	Rumah sendiri	1.000.000	54	Macet	
6	Alima	Menikah	Rumah sendiri	1.000.000	60	Macet	
7	Lua	Menikah	Rumah sendiri	1.000.000	60	Macet	

Tabel 3.9 Data pada kasus Pengasilan > 1.000.000

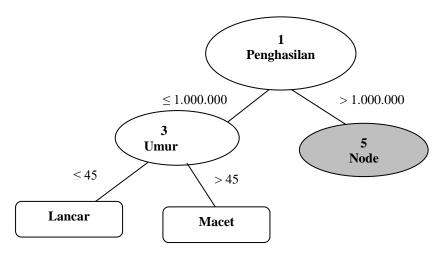
No	Nama	Status	Status	Penghasilan		Status
110	1 (62226	Pernikahan	Rumah	1 viigitusituii	Umur	Status
1	Mus	Menikah	Rumah sendiri	1.800.000	54	Lancar
2	Umu	Menikah	Rumah sendiri	1.500.000	39	Lancar
3	Reni	Menikah	Rumah sendiri	3.000.000	45	Lancar
4	Ponik	Menikah	Kontrak	2.500.000	41	Macet
5	Sunar	Menikah	Rumah sendiri	1.800.000	36	Macet
6	Muslik	Menikah	Rumah sendiri	2.000.000	55	Macet
7	Suhar	Janda	Kontrak	3.000.000	49	Macet
8	Astuti	Janda	Rumah sendiri	1.700.000	54	Macet
9	Win	Menikah	Rumah sendiri	2.000.000	36	Macet
10	Setri	Menikah	Rumah sendiri	2.700.000	44	Lancar
11	Sri	Menikah	Rumah sendiri	3.000.000	47	Lancar
12	Suharti	Menikah	Kontrak	2.800.000	52	Lancar
13	Kaseh	Menikah	Rumah sendiri	1.800.000	46	Lancar
14	Eti	Menikah	Rumah sendiri	1.500.000	40	Lancar
15	Umuh	Menikah	Rumah sendiri	2.000.000	49	Lancar

Lanjutan Tabel 3.9 Data pada kasus Pengasilan > 1.000.000

No	Nama	Status	Status	Penghasilan		Status
110	Mama	Pernikahan	Rumah	Tengnasnan	Umur	Status
16	Lilik	Menikah	Rumah sendiri	1.500.000	37	Lancar
17	Sundari	Menikah	Rumah sendiri	2.700.000	36	Macet
18	Yuniarti	Menikah	Rumah sendiri	2.700.000	35	Lancar
19	Pia	Menikah	Rumah sendiri	2.000.000	55	Lancar
20	Patona	Menikah	Rumah sendiri	3.000.000	25	Lancar
21	Muniro	Menikah	Rumah sendiri	2.000.000	50	Macet
22	Amina	Menikah	Rumah sendiri	1.500.000	38	Macet

Pada perhitungan cabang selanjutnya fitur Pengasilan 1.000.000 tidak lagi dilibatkan dalam perhitungan. Selanjutnya, memilih atribut kembali sebagai pemecah cabang pada kasus pengasilan $\leq 1.000.000$. Berikut hasil perhitungan atribut untuk setiap posisi V yang telah ditentukan:

untuk atribut umur V={35,40,45} disajikan pada tabel 3.10. Hasil perhitungan setiap atribut bertipe kategorikal disajikan pada tabel 3.11


Tabel 3.10 Hasil perhitungan *gain* atribut umur pada kasus penghasilan ≤1.000.000

	4	0	4	5
Umur	≤	>	<u> </u>	>
Lancar	1	0	0	0
Macet	6	6	6	6
Jumlah	7	0	6	6
Entropy	0.952 0.000 0.000 0.			0.000
Gain	0.862 1.000			00

Tabel 3.11 Hasil perhitungan *gain* atribut tipe kategorikal pada kasus Penghasilan ≤1.000.000

		Jumlah	Lancar	Macet	Entropy	Gain
Total		7	1	6	0.592	
Status	Menikah	6	0	6	0.000	0.933
Pernikahan	Janda		1	1	1.000	
Status	Sendiri	7	1	6	0.592	0.862
Rumah	Kontrak	0	0	0	0.000	

Dari hasil perhitungan gain pada tabel 3.10 dan 3.11 atribut umur memiliki nilai gain paling tinggi, pembagian cabang pada node ini adalah cabang ≤ 4.5 dengan >4.5, Seperti yang ditunjukkan pada gambar 3.4. Pada cabang umur ≤ 4.5 dan >4.5 dengan label kelas bernilai lancar dan macet, dipastikan mempunyai entropy 0. Oleh karena itu dijadikan daun.

Gambar 3.4 Hasil pembentukan cabang pada node 3

Tabel 3.12 Data pada kasus umur ≤ 45

No	Nama	Status Pernikahan	Status Rumah	Penghasilan	Umur	Status
1	Nur	Janda	Rumah sendiri	1.000.000	40	Lancar

Tabel 3.13 Data pada kasus umur > 45

No	Nama	Status	Status	Penghasilan	Umur	Status
140	Nama	Pernikahan	Rumah	1 enghashan		Status
1	Las	menikah	Rumah sendiri	1.000.000	60	Macet
2	Sipah	menikah	Rumah sendiri	1.000.000	54	Macet
3	Munta	Janda	Rumah sendiri	1.000.000	51	Macet
4	Isnu	menikah	Rumah sendiri	1.000.000	54	Macet
5	Alima	menikah	Rumah sendiri	1.000.000	60	Macet
6	Lua	menikah	Rumah sendiri	1.000.000	60	Macet

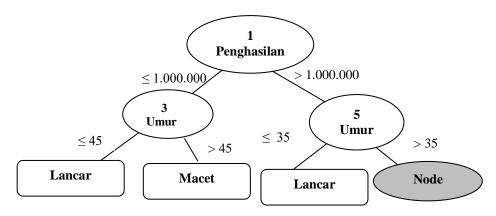
Selanjutnya kembali ke cabang Pengasilan > 1.000.000 dengan memilih atribut sebagai node pemecah cabang yaitu pada kasus tabel 3.9 Berikut hasil perhitungan atribut untuk setiap posisi V yang telah ditentukan:

untuk atribut penghasilan V={2.000.000,3.000.000}, dan atribut usia V={35,40,45}. Hasil perhitungan atribut penghasilan disajikan pada tabel 3.12, hasil perhitungan atribut usia disajikan pada tabel 3.13. Hasil perhitungan setiap atribut bertipe kategorikal disajikan pada tabel 3.14.

Tabel 3.14 Hasil perhitungan *gain* atribut Penghasilan pada kasus penghasilan >1.000.000

	2.000	0.000	3.000.000		
Penghasila	≤	≤ >		>	
Lancar	6	7	10	2	
Macet	6	2	8	1	
Jumlah	12	9	18	3	
Entropy	1.000	1.000 0.764		0.918	
Gain	0.371		0.314		

Tabel 3.15 Hasil perhitungan *gain* atribut umur pada kasus penghasilan >1.000.000


	3	5	40		45		
Umur	≤	≤ >		>	<u> </u>	>	
Lancar	2	9	5	6	7	4	
Macet	0	8	4	5	5	4	
Jumlah	2	17	9	11	12	8	
Entropy	0.000	0.998	0.991 0.994		0.980 1.000		
Gain	0.4	0.435		0.338		0.341	

Tabel 3.16 Hasil perhitungan *gain* atribut tipe kategorikal pada kasus Penghasilan >1.000.000

		Jumlah	Lancar	Macet	Entropy	Gain
Total	•	22	13	9	0.976	
Status	Menikah	20	13	7	0.943	0.337
Pernikahan	Janda	2	0	2	0.000	
Status	Sendiri	19	12	7	0.949	0.307
Rumah	Kontrak	3	1	2	0.918	

Hasil perhitungan pada tabel 3.13 menunjukkan bahwa atribut umur memiliki rasio *gain* paling tinggi, pembagian cabang pada node ini adalah cabang ≤ 35 dengan >35, Seperti yang ditunjukkan pada gambar 3.5. Pada cabang umur ≤

35 dengan label kelas bernilai lancar, dipastikan mempunyai entropy 0. Oleh karena itu dijadikan daun.

Gambar 3.5 Hasil pembentukan cabang pada node 5

Tabel 3.17 Data pada kasus umur ≤35

No	Nama	Status	Status	Penghasilan	Umur	Status
140	Nama	Pernikahan	Rumah	1 enghashan		Status
1	Yuniarti	menikah	Rumah sendiri	2.700.000	35	Lancar
2	Yuniarti	menikah	Rumah sendiri	2.700.000	35	Lancar

Tabel 3.18 Data pada kasus umur > 35

No	Nama	Status Pernikahan	Status Rumah	Penghasilan	Umur	Status
1	Mus	menikah	Rumah sendiri	1.800.000	54	Lancar
2	Umu	menikah	Rumah sendiri	3.500.000	39	Lancar
3	Reni	menikah	Rumah sendiri	3.000.000	45	Lancar
4	Ponik	menikah	Kontrak	2.500.000	41	Macet
5	Sunar	menikah	Rumah sendiri	1.800.000	36	Macet
6	Muslik	menikah	Rumah sendiri	2.000.000	55	Macet
7	Suhar	Janda	Kontrak	3.100.000	49	Macet

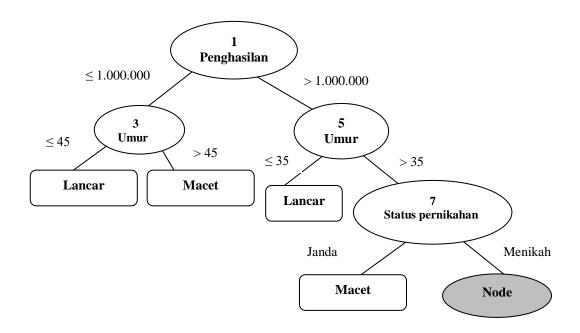
Lanjutan Tabel 3.18 Data pada kasus umur > 35

No	Nama	Status Pernikahan	Status Rumah	Penghasilan	Umur	Status
8	Astuti	Janda	Rumah sendiri	1.700.000	54	Macet
9	Win	menikah	Rumah sendiri	2.000.000	36	Macet
10	Setri	menikah	Rumah sendiri	2.700.000	44	Lancar
11	Sri	menikah	Rumah sendiri	4.000.000	47	Lancar
12	Suharti	menikah	Kontrak	2.800.000	52	Lancar
13	Kaseh	menikah	Rumah sendiri	1.800.000	46	Lancar
14	Eti	menikah	Rumah sendiri	1.500.000	40	Lancar
15	Umuh	menikah	Rumah sendiri	2.000.000	49	Lancar
16	Lilik	menikah	Rumah sendiri	1.500.000	37	Lancar
17	Sundari	menikah	Rumah sendiri	2.700.000	36	Macet
18	Pia	menikah	Rumah sendiri	2.000.000	55	Lancar
19	Muniro	menikah	Rumah sendiri	2.000.000	50	Macet
20	Amina	menikah	Rumah sendiri	1.500.000	38	Macet

Perhitungan berikutnya memilih atribut sebagai cabang dari pilihan umur ≤ 35. Perhitungan nilai *gain* bertipe numerik dihitung pada nilai perbandingan yang berbeda, untuk atribut penghasilan V={2.000.000, 3.000.000} dan atribut umur V={35, 40, 45}. Hasil perhitungan atribut penghasilan disajikan pada tabel 3.19, hasil perhitungan atribut umur disajikan pada tabel 3.20. Hasil perhitungan setiap atribut bertipe kategorikal disajikan pada tabel 3.21.

Tabel 3.19 Hasil perhitungan *gain* atribut Penghasilan pada kasus umur >35

	2.000	0.000	3.000.000		
Penghasilan	≤ >		≤	>	
Lancar	6	7	10	2	
Macet	6	3	8	1	
Jumlah	12	10	18	3	
Entropy	1.000	0.881	0.991	0.000	
Gain	0.3	06	0.405		


Tabel 3.20 Hasil perhitungan *gain* atribut umur pada kasus umur >35

	35		4	40		45	
Umur	≤	>	<u> </u>	>	<u> </u>	>	
Lancar	1	10	5	8	6	6	
Macet	2	9	2	5	3	4	
Jumlah	3	19	7	13	9	10	
Entropy	0.918	0.998	0.863	0.961	0.918	0.971	
Gain	0.2	76	0.382		0.401		

Tabel 3.21 Hasil perhitungan *gain* atribut tipe kategorikal pada kasus umur >35

		Jumlah	Lancar	Macet	Entropy	Gain
Total		20	11	9	0.99277	
Status	Menikah	18	11	7	0.964	0.422
Pernikahan	Janda	2	0	2	0.000	
Status	Sendiri	17	10	7	0.977	0.354
Rumah	Kontrak	3	1	2	0.918	

Dari hasil perhitungan *gain* pada tabel 3.19, 3.20 dan 3.21, atribut yang memiliki nilai *gain* tertinggi adalah atribut status pernikahan. Pembagian cabang pada node ini adalah cabang menikah dengan janda seperti yang ditunjukkan pada gambar 3.6. Pada cabang janda dengan label kelas bernilai macet, dipastikan mempunyai entropy 0. Oleh karena itu dijadikan daun.

Gambar 3.6 Hasil pembentukan cabang pada node 7Tabel 3.22 Data pada kasus menikah

No	Nama	Status Pernikahan	Status Rumah	Penghasilan	Umur	Status
1	Mus	menikah	Rumah sendiri	1.800.000	54	Lancar
2	Umu	menikah	Rumah sendiri	3.500.000	39	Lancar
3	Reni	menikah	Rumah sendiri	3.000.000	45	Lancar
4	Ponik	menikah	Kontrak	2.500.000	41	Macet
5	Sunar	menikah	Rumah sendiri	1.800.000	36	Macet
6	Muslik	menikah	Rumah sendiri	2.000.000	55	Macet
7	Win	menikah	Rumah sendiri	2.000.000	36	Macet
8	Setri	menikah	Rumah sendiri	2.700.000	44	Lancar
9	Sri	menikah	Rumah sendiri	4.000.000	47	Lancar
10	Suharti	menikah	Kontrak	2.800.000	52	Lancar
11	Kaseh	menikah	Rumah sendiri	1.800.000	46	Lancar
12	Eti	menikah	Rumah sendiri	1.500.000	40	Lancar

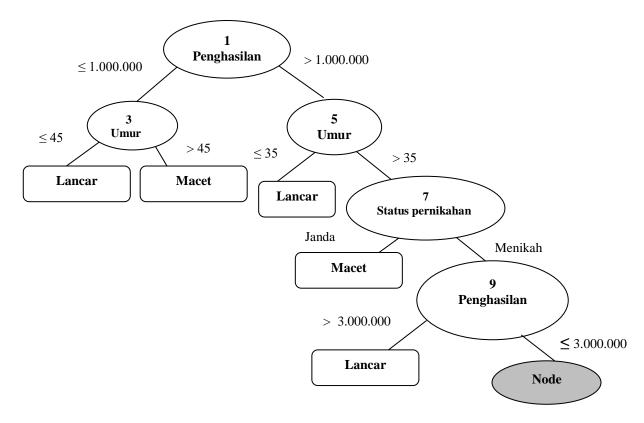
Lanjutan Tabel 3.22 Data pada kasus menikah

No	Nama	Status Pernikahan	Status Rumah	Penghasilan	Umur	Status
13	Umuh	menikah	Rumah sendiri	2.000.000	49	Lancar
14	Lilik	menikah	Rumah sendiri	1.500.000	37	Lancar
15	Sundari	menikah	Rumah sendiri	2.700.000	36	Macet
16	Pia	menikah	Rumah sendiri	2.000.000	55	Lancar
17	Muniro	menikah	Rumah sendiri	2.000.000	50	Macet
18	Amina	menikah	Rumah sendiri	1.500.000	38	Macet

Perhitungan berikutnya memilih atribut sebagai cabang dari pilihan menikah. Perhitungan nilai *gain* bertipe numerik dihitung pada nilai perbandingan yang berbeda, untuk atribut penghasilan V={2.000.000, 3.000.000} dan atribut umur V={35, 40, 45}. Hasil perhitungan atribut penghasilan disajikan pada tabel 3.23, hasil perhitungan atribut umur disajikan pada tabel 3.24. Hasil perhitungan setiap atribut bertipe kategorikal disajikan pada tabel 3.25.

Tabel 3.23 Hasil perhitungan *gain* atribut Penghasilan pada kasus menikah

	2.000.000		3.000.000		
Penghasilan	≤	>	٧	>	
Lancar	5	7	9	2	
Macet	5	3	7	0	
Jumlah	10	10	16	2	
Entropy	1.000	0.881	0.989	0.000	
Gain	0.373 0.473		73		


Tabel 3.24 Hasil perhitungan *gain* atribut umur pada kasus menikah

	3	5	40		45	
Umur	<u> </u>	>	<u> </u>	>	<u> </u>	>
Lancar	3	8	5	8	6	6
Macet	4	9	2	5	3	4
Jumlah	7	17	7	13	9	10
Entropy	0.985	0.998	0.863	0.961	0.918	0.971
Gain	0.2	205	0.382		0.401	

Tabel 3.25 Hasil perhitungan gain atribut kategorikal pada kasus menikah

		Jumlah	Lancar	Macet	Entropy	Gain
Total		18	11	7	0.96408	
Status	Menikah	17	11	7	0.964	0.422
Pernikahan	Janda	0	0	0	0.000	
Status	Sendiri	16	10	6	0.954	0.424
Rumah	Kontrak	2	1	1	1.000	

Dari hasil perhitungan gain pada tabel 3.23, 3.24 dan 3.25, atribut yang memiliki nilai gain tertinggi adalah atribut pengasilan 3.000.000. Pembagian cabang pada node ini adalah cabang $\leq 3.000.000$ dengan > 3.000.000 seperti yang ditunjukkan pada gambar 3.7. Pada cabang > 3.000.000 dengan label kelas bernilai lancar, dipastikan mempunyai entropy 0. Oleh karena itu dijadikan daun.

Gambar 3.7 Hasil pembentukan cabang pada node 9

Tabel 3.26 Data pada kasus pengasilan $\leq 3.000.000$

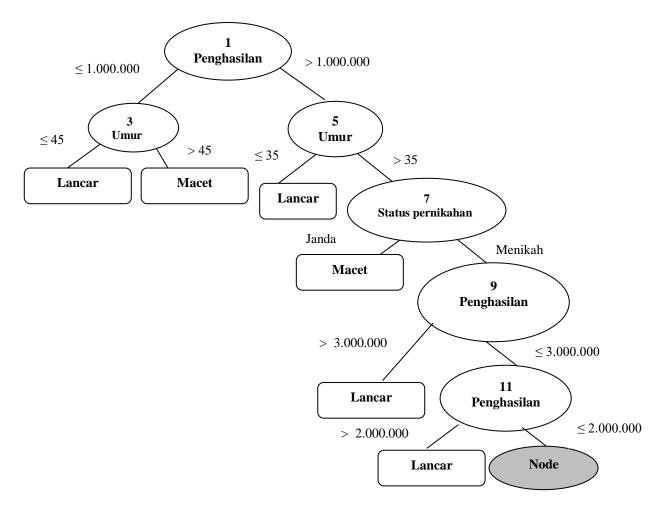
No	Nama	Status Pernikahan	Status Rumah	Penghasilan	Umur	Status
1	Mus	menikah	Rumah sendiri	1.800.000	54	Lancar
2	Reni	menikah	Rumah sendiri	3.000.000	45	Lancar
3	Ponik	menikah	Kontrak	2.500.000	41	Macet
4	Sunar	menikah	Rumah sendiri	1.800.000	36	Macet
5	Muslik	menikah	Rumah sendiri	2.000.000	55	Macet
6	Win	menikah	Rumah sendiri	2.000.000	36	Macet
7	Setri	menikah	Rumah sendiri	2.700.000	44	Lancar
8	Suharti	menikah	Kontrak	2.800.000	52	Lancar

Lanjutan Tabel 3.26 Data pada kasus pengasilan $\leq 3.000.000$

No	Nama	Status Pernikahan	Status Rumah	Penghasilan	Umur	Status
9	Kaseh	menikah	Rumah sendiri	1.800.000	46	Lancar
10	Eti	menikah	Rumah sendiri	1.500.000	40	Lancar
11	Umuh	menikah	Rumah sendiri	2.000.000	49	Lancar
12	Lilik	menikah	Rumah sendiri	1.500.000	37	Lancar
13	Sundari	menikah	Rumah sendiri	2.700.000	36	Macet
14	Pia	menikah	Rumah sendiri	2.000.000	55	Lancar
15	Muniro	menikah	Rumah sendiri	2.000.000	50	Macet
16	Amina	menikah	Rumah sendiri	1.500.000	38	Macet

Tabel 3.27 Hasil perhitungan gain atribut Penghasilan pada kasus pengasilan $\leq 3.000.000$

	2.000.000		3.000.000		
Penghasilan	≤	>	٧	>	
Lancar	6	3	8	0	
Macet	5	0	7	0	
Jumlah	11	3	15	0	
Entropy	0.994	0.000	0.997	0.000	
Gain	0.636		0.502		


Tabel 3.28 Hasil perhitungan *gain* atribut umur pada kasus pengasilan $\leq 3.000.000$

	3	5	40		45	
Umur	<u> </u>	>	<u> </u>	>	<u> </u>	>
Lancar	0	9	2	7	4	2
Macet	0	7	4	3	5	2
Jumlah	0	16	6	10	9	4
Entropy	0.000	0.989	0.918	0.881	0.991	1.000
Gain	0.4	73	0.5	23	0.5	69

Tabel 3.29 Hasil perhitungan *gain* atribut kategorikal kasus menikah pada pengasilan ≤3.000.000

		Jumlah	Lancar	Macet	Entropy	Gain
Total		16	9	7	0.98870	
Status	Menikah	16	9	7	0.989	0.473
Pernikahan	Janda	0	0	0	0.000	
Status	Sendiri	14	8	6	0.985	0.474
Rumah	Kontrak	2	1	1	1.000	

Dari hasil perhitungan gain pada tabel 3.27, 3.28 dan 3.29, atribut yang memiliki nilai gain tertinggi adalah atribut pengasilan 2.000.000. Pembagian cabang pada node ini adalah cabang $\leq 2.000.000$ dengan > 2.000.000 seperti yang ditunjukkan pada gambar 3.8. Pada cabang > 2.000.000 dengan label kelas bernilai lancar, dipastikan mempunyai entropy 0. Oleh karena itu dijadikan daun.

Gambar 3.8 Hasil pembentukan cabang pada node 11

Tabel 3.30 Data pada kasus pengasilan $\leq 2.000.000$

No	Nama	Status Pernikahan	Status Rumah	Penghasilan	Umur	Status
1	Mus	menikah	Rumah sendiri	1.800.000	54	Lancar
2	Sunar	menikah	Rumah sendiri	1.800.000	36	Macet
3	Muslik	menikah	Rumah sendiri	2.000.000	45	Macet
4	Win	menikah	Rumah sendiri	2.000.000	36	Macet
5	Kaseh	menikah	Rumah sendiri	1.800.000	46	Lancar
6	Eti	menikah	Rumah sendiri	1.500.000	40	Lancar

Lanjutan Tabel 3.30 Data pada kasus pengasilan $\leq 2.000.000$

No	Nama	Status Pernikahan	Status Rumah	Penghasilan	Umur	Status
7	Umuh	menikah	Rumah sendiri	2.000.000	49	Lancar
8	Lilik	menikah	Rumah sendiri	1.500.000	37	Lancar
9	Pia	menikah	Rumah sendiri	2.000.000	55	Lancar
10	Muniro	menikah	Rumah sendiri	2.000.000	43	Macet
11	Amina	menikah	Rumah sendiri	1.500.000	38	Macet

Tabel 3.31 Hasil perhitungan *gain* atribut Penghasilan pada kasus pengasilan ≤2.000.000

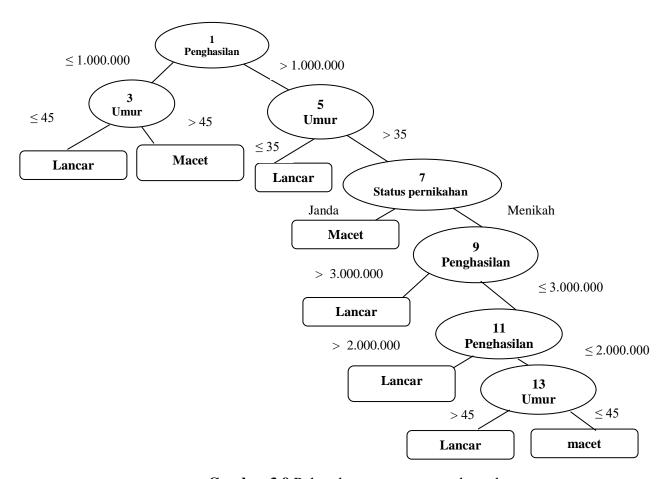
	2.000.000		3.000.000	
Penghasilan	≤	>	Y	>
Lancar	6	0	6	0
Macet	5	0	5	0
Jumlah	11	0	11	0
Entropy	0.994	0.000	0.994	0.000
Gain	0.636		0.6	536

Tabel 3.32 Hasil perhitungan *gain* atribut umur pada kasus penghasilan ≤2.000.000

	35		40		45	
Umur	≤	>	≤	>	≤	>
Lancar	0	6	2	4	2	0
Macet	0	5	3	2	5	0
Jumlah	0	11	5	6	7	0
Entropy	0.000	0.994	0.971	0.918	0.863	0.000
Gain	0.6	36	0.6	555	0.7	99

Tabel 3.33 Hasil perhitungan gain atribut kategorikal pada pengasilan \leq 2.000.000

		Jumlah	Lancar	Macet	Entropy	Gain
Total		11	6	5	0.99403	
Status	Menikah	11	6	5	0.994	0.636
Pernikahan	Janda	0	0	0	0.000	
Status	Sendiri	11	6	5	0.994	0.636
Rumah	Kontrak	0	0	0	0.000	


Dari hasil perhitungan *gain* pada tabel 3.31, 3.32 dan 3.33, atribut yang memiliki nilai *gain* tertinggi adalah atribut umur 45 Pembagian cabang pada node ini adalah cabang ≤ 45 dengan > 45 seperti yang ditunjukkan pada gambar 3.9. Pada cabang > 45 dengan label kelas bernilai lancar, dipastikan mempunyai entropy 0. Oleh karena itu dijadikan daun. Sedangkan pada kasus ≤ 45 jumlah data kelas macet lebih banyak daripada kelas lancar, maka nilai daunnya adalah macet. Pembentukan pohon keputusan dinyatakan selesai, karena sudah tidak ada cabang yang harus diproses dan semua kasus sudah menjadi daun. Pohon keputusan yang terbentuk seperti ditunjukkan pada gambar 3.9. Pembagian data disajikan pada tabel 3.34 dan 3.35

Tabel 3.34 Data pada kasus umur > 45

No	Nama	Status Pernikahan	Status Rumah	Penghasilan	Umur	Status
1	Mus	menikah	Rumah sendiri	1.800.000	54	Lancar
2	Kaseh	menikah	Rumah sendiri	1.800.000	46	Lancar
3	Pia	menikah	Rumah sendiri	2.000.000	55	Lancar
4	Umuh	menikah	Rumah sendiri	2.000.000	49	Lancar

Tabel 3.35 Data pada kasus umur ≤ 45

No	Nama	Status	Status	Penghasilan	Umur	Status
110	Tuma	Pernikahan Run		1 chghushun		Status
1	Sunar	menikah	Rumah sendiri	1.800.000	36	Macet
2	Muslik	menikah	Rumah sendiri	2.000.000	45	Macet
3	Win	menikah	Rumah sendiri	2.000.000	36	Macet
4	Muniro	menikah	Rumah sendiri	2.000.000	43	Macet
5	Amina	menikah	Rumah sendiri	1.500.000	38	Macet
6	Eti	menikah	Rumah sendiri	1.500.000	40	Lancar
7	Lilik	menikah	Rumah sendiri	1.500.000	37	Lancar

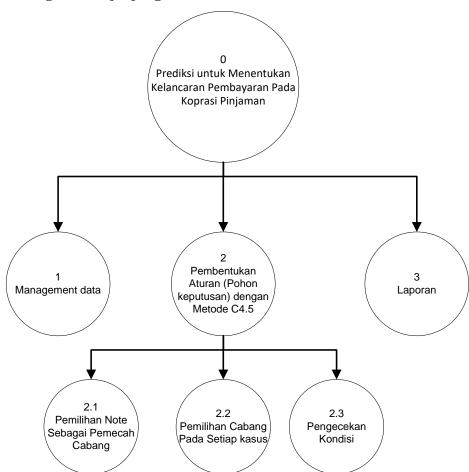
Gambar 3.9 Pohon keputusan yang terbentuk

Dari pohon keputusan tersebut di *convert* menjadi aturan rule dan dijadikan bentuk aturan IF THEN sebagai berikut:

- 1. IF Penghasilan $\leq 1.000.000$ AND Umur ≤ 45 THEN = Lancar
- 2. IF Penghasilan $\leq 1.000.000$ AND Umur > 45 THEN = Macet
- 3. IF Penghasilan > 1.000.000 AND Umur ≤ 35 THEN = Lancar
- 4. IF Penghasilan > 1.000.000 AND Umur > 35 AND Status pernikahan Janda THEN = Macet
- 5. IF Penghasilan > 1.000.000 AND Umur > 35 AND Status pernikahan Menikah AND Penghasilan > 3.000.000 THEN = Lancar
- 6. IF Penghasilan > 1.000.000 AND Umur > 35 Status pernikahan Menikah AND Penghasilan $\le 3.000.000$ AND Penghasilan > 2.000.000 THEN = Lancar
- IF Penghasilan > 1.000.000 AND Umur > 35 Status pernikahan Menikah AND Penghasilan ≤ 3.000.000 AND Penghasilan ≤ 2.000.000 AND Umur > 45 THEN = Lancar
- 8. IF Penghasilan > 1.000.000 AND Umur > 35 Status pernikahan Menikah
 AND Penghasilan ≤ 3.000.000 AND Penghasilan ≤ 2.000.000 AND Umur
 ≤ 45 THEN = Macet

3.5 Perancangan Sistem

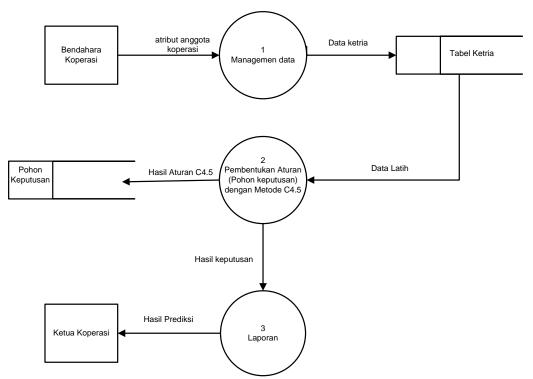
Tahapan ini akan membahas mengenai context diagram, data flow diagram, perancangan database dan interface aplikasi.


3.5.1 Context Diagram Sistem

Gambar 3.10 Context Diagram Prediksi Menentukan Kelancaran Pembayaran

Penjelasan dari gambar 3.10, terlihat bahwa yang terlibat (*entity*) dalam sistem ini adalah bendahara koperasi dan ketua koperasi. Bendahara koperasi, memasukkan data calon anggota koperasi sebagai data latih yang terdiri dari penghasilan, status pernikahan, status rumah dan umur. Data tersebut digunakan sebagai *data training* atau data yang akan diproses untuk pembentukan pohon keputusan. Keluaran dari sistem untuk bendahara koperasi adalah hasil prediksi anggota koperasi berupa status pembayaran berdasarkan data yang telah dimasukkan. Sedangkan ketua koperasi dapat melihat laporan atau hasil prediksi calon anggota koperasi yang telah melalui proses prediksi.

3.5.2 Diagram Berjenjang

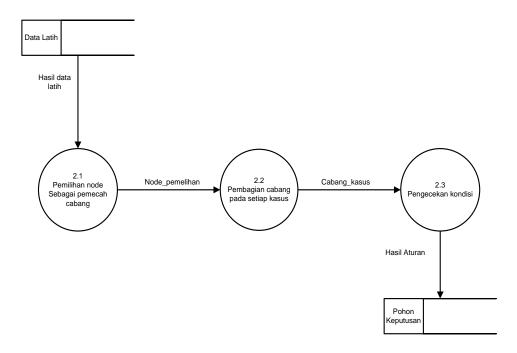


Gambar 3.11 Diagram Berjenjang Prediksi Menentukan Kelancaran Pembayaran Diagram berjenjang disajikan pada gambar 3.11. berikut penjelasannya:

 Top level : Sistem prediksi menentukan kelancaran pembayaran pada koperasi simpan pinjam wanita "HARUM MANIS" desa Sirnoboyo kecamatan benjeng

- 2. Level 0 : 1 Manajemen data, merupakan proses pengolahan data training atau data yang akan digunakan dalam pembentukan pohon keputusan.
 - 2 Pembentukan aturan (pohon keputusan) dengan metode C4.5, yang didalamnya terdapat tiga proses.
 - 3 Pembuatan laporan hasil prediksi.
- 3. Level 1 : 2.1 Pemilihan node sebagai pemecah cabang.
 - 2.2 Pembagian cabang pada setiap kasus.
 - 2.3 Pengecekan kondisi, yaitu jika masih ada kasus yang memiliki kelas yang berbeda maka mengulangi.

3.5.3 Data flow Diagram (DFD) Level 0

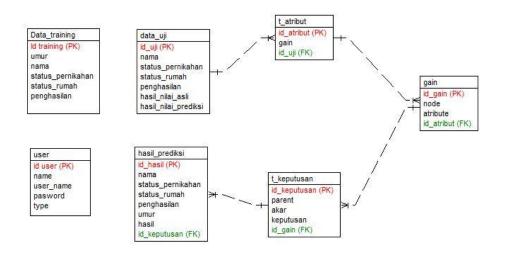


Gambar 3.12 DFD Level 0 Prediksi Kelancaran Pembayaran Pada Koprasi Simpan Pinjam

DFD *level* 0 pada gambar 3.12 menjelaskan aliran data pada sistem. Terdapat tiga proses didalam sistem tersebut. Proses pertama adalah managemen data atribut anggota yang diinputkan oleh bendahara Koperasi.

Data ketria anggota koperasi di simpan ke dalam *database* ketria yang akan menjadi data latih untuk proses pembentukan pohon keputusan. Proses kedua yaitu pembentukan aturan (pohon keputusan) yang akan digunakan pada proses perediksi data uji hasilnya di simpan kedalam *database* pohon keputusan. Pada proses ketiga laporan akan diberikan kepada ketua koperasi.

3.5.4 Data Flow Diagram (DFD) Level 1


Gambar 3.13 DFD *Level* 1 proses pembentukan aturan (pohon keputusan)

Proses pembentukan aturan menggunakan metode *decision tree c4.5* ini memiliki tiga proses didalamnya yaitu, proses pemilihan *node* yang akan dijadikan sebagi pemecah cabang, membagi cabang pada setiap kasus, dan proses pengecekan kondisi. Jika ada kasus yang memiliki kelas berbeda, maka akan mengulangi pada proses pemilihan *node*. Hasil dari proses ini adalah aturan atau pohon keputusan yang akan disimpan pada *database*.

3.5.5 Perancangan Basis Data Entity Realitionship Diagram (ERD)

3.5.1 Entity Realitionship Diagram (ERD)

Entity Realitionship Diagram (ERD) merupakan suatu model untuk menjelaskan hubungan antar data dalam basis data berdasarkan objek-objek dasar data yang mempunyai hubungan antar relasi.

Gambar 3.14 Entity Realitionship Diagram (ERD)

Rancangan tabel ini menjelaskan tabel atau tempat penyimpanan data yang digunakan untuk keperluan sistem yang akan dibangun. Berikut adalah rancangan dari tabel-tabel yang akan digunakan.

Data_training

Tabel ini digunakan untuk menyimpan data training atau data yang akan diproses pada pembentukan pohon keputusan seperti pada tabel 3.36.

No	Name_field	Type	Length	Key
1	Id	Int	11	Primary key
2	nama	Varchar	50	
3	Status_pernikahan	Varchar	10	
4	Status_rumah	Varchar	10	
5	penghasilan	Double		
7	umur	Int	20	

Tabel 3.36 Struktur tabel data training

Data_uji

Tabel ini digunakan untuk menyimpan data pengujian, yaitu untuk tingkat akurasi dari pohon keputusan yang terbentuk. Strukturnya sama dengan tabel data training dengan ditambahi field hasil prediksi seperti pada tabel 3.37.

Name_field No Type Length Key 1 Id 11 Int Primary key 2 Varchar 50 nama 3 Status_pernikahan Varchar 20 4 $Status_rumah$ Varchar 20 5 penghasilan Double 7 30 umur Int 8 Hasil_nilai_asli Double 9

Double

Tabel 3.37 Struktur tabel data uji

Hasil_prediksi

Hasil_nilai_prediksi

Tabel ini digunakan untuk menyimpan data hasil prediksi. Strukturnya sama dengan tabel data training namun field keterangan diganti dengan hasil seperti pada tabel 3.38.

No	Name_field	Type	Length	Key
1	Id	Int	11	Primary key
2	nama	Varchar	50	
3	Status_pernikahan	Varchar	20	
4	Status_rumah	Varchar	20	
5	penghasilan	Double		
6	umur	Int	30	
7	hasil	Double		
8	Id_keputusan	Int	11	Foreign Key

Tabel 3.38 Struktur table hasil prediksi

• Gain

Tabel ini merupakan *temporary* digunakan untuk menampung hasil perhitungan *gain* seperti pada tabel 3.39.

Tabel 3.39 Struktur tabel Gain

No	Name_field	Туре	Length	Key
1	Id_gain	Int	11	Primary key
2	Node	Int	11	
3	Atribut	Varchar	40	
4	Gain	Double		
5	Id_atribut	Int	11	Foreign Key

• t_atribut

Tabel ini merupakan *temporary* untuk menyimpan variable yang digunakan dalam data seperti pada tabel 3.40

Tabel 3.40 Struktur tabel atribut

No	Name_field	Type	Length	Key
1	id_atribut	Int	11	Primary key
2	Atribut	Varchar	20	
3	Gain	Double		
4	Id_dtuji	Int	11	Foreign Key

• t_user

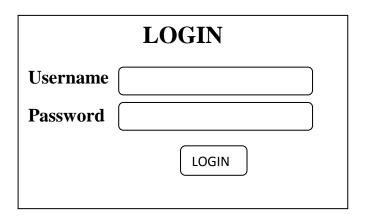
Tabel ini digunakan untuk menyimpan data *user*, baik itu *user* sebagai bendahara koperasi atau sebagai ketua koperasi seperti pada tabel 3.41

Tabel 3.41 Struktur t_user

No	Name_field	Type	Length	Key
1	user_id	Int	25	Primary key
2	Nama	Varchar	50	
3	Username	Varchar	30	
4	Password	Text		
5	Type	Char	1	

• t_keputusan

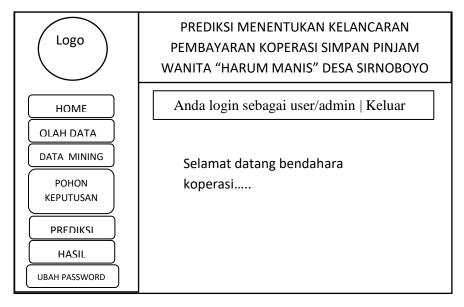
Tabel ini menampung hasil dari proses pembentukan pohon keputusan, yaitu menampung aturan-aturan yang telah terbentuk seperti pada tabel 3.42.


Field_name Key No Type Length 1 Id Int 11 Primary key 2 Parent Text 3 Akar Text 4 Varchar 100 Keputusan 5 Foreign Key Id_gain Int 11

Tabel 3.42 Struktur t_keputusan

3.5.6 Perancangan Desain Antar Muka (Interface)

Tampilan antar muka pengguna sebagai Bendahara koperasi yaitu halaman *login, home*, data latih, data *mining*, pohon keputusan, prediksi, hasil prediksi dan data user. Sedangkan pengguna sebagai ketua koperasi adalah *login, home*, pohon keputusan, dan laporan hasil klasifikasi.


➤ Halaman Login (Bendahara koperasi/Ketua koperasi)

Gambar 3.15 Rancangan Halaman login

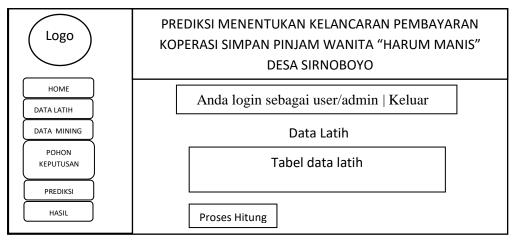
> Halaman Utama (Bendahara Koperasi/Ketua Koperasi)

Halaman utama seperti pada gambar 3.16 merupakan halaman awal ketika sistem dijalankan setelah proses login yang dilakukan oleh bendahara Koperasi. Sedangkan pada gambar 3.17 merupakan halaman awal setelah proses login yang dilakukan oleh Ketua koperasi.

Gambar 3.16 Rancangan Halaman *User* Bendahara Koperasi

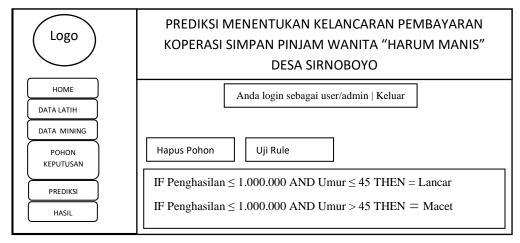
Gambar 3.17 Rancangan Halaman Ketua Koperasi

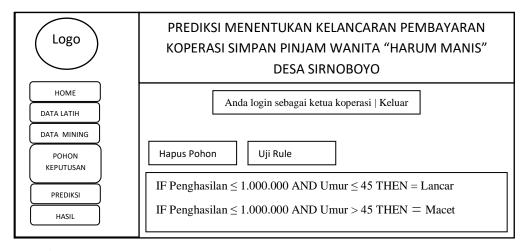
➤ Halaman Data Latih (Bendahara Koperasi)


Halaman data latih seperti pada gambar 3.18 merupakan halaman yang berfungsi untuk mengolah data latih yang akan digunakan dalam perediksi kelancaran pembayara koperasi simpan pinjam. Bendahara koperasi menambah data dengan cara mengimport dari excel. Halaman ini hanya bisa diakses oleh Bendahara Koperasi.

Gambar 3.18 Rancangan Halaman Data Latih

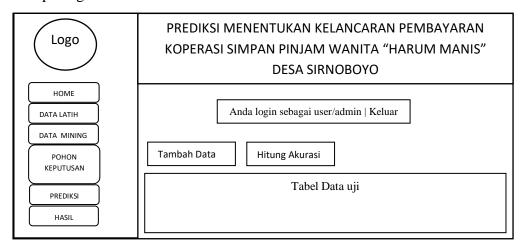
➤ Halaman Data Mining (Bendara Koperasi)


Halaman data mining seperti pada gambar 3.19 merupakan halaman yang berfungsi untuk menghitung data latih sehingga terbentuk pohon keputusan.Halaman ini hanya bisa diakses oleh bendahara koperasi.


Gambar 3.19 Rancangan Halaman Data Mining

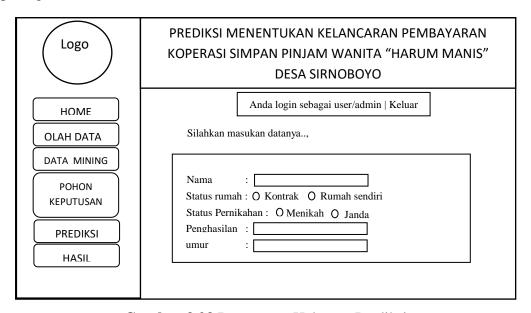
➤ Halaman Pohon Keputusan (Bendahara Koperasi /Ketua Koperasi)

Halaman pohon keputusan seperti pada gambar 3.20 dan gambar 3.21 merupakan halaman yang berfungsi untuk menampilkan aturan atau sebuah pohon yang terbentuk dari proses hitung mining. Halaman ini bisa diakses oleh Bendahara Koperasi dan Ketua Koperasi



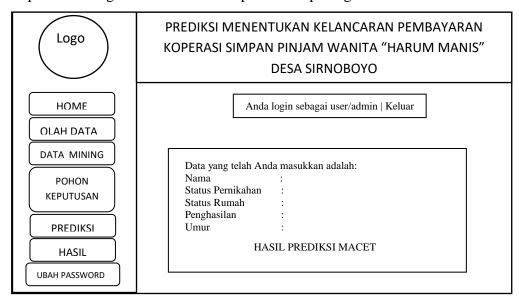
Gambar 3.20 Rancangan Halaman Pohon Keputusan Bendahara Koperasi

Gambar 3.21 Rancangan Halaman Pohon Keputusan Ketua Koperasi


Halaman ini juga digunakan untuk menguji (uji rule) tingkat akurasi pohon keputusan yang terbentuk dari proses hitung mining. Halaman ini hanya bisa diakses oleh Bendahara Koperasi. Tampilan rancangan halaman uji akurasi dapat dilihat pada gambar 3.22.

Gambar 3.22 Rancangan Halaman uji akurasi

➤ Halaman Prediksi (Bendahara Koperasi)


Halaman ini digunakan bendahara koperasi untuk memasukkan data atribut pinjaman anggota koperasi yang akan di prediksi. Halaman ini hanya bisa diakses oleh Bendahara koperasi. Tampilan rancangan halaman klasifikasi dapat dilihat pada gambar 3.23

Gambar 3.23 Rancangan Halaman Prediksi

➤ Tampilan Hasil (Bendahara Koperasi / Ketua Koperasi)

Halaman hasil ini akan menampilkan daftar hasil Prediksi pinjaman anggota koperasi. Halaman ini bisa diakses oleh bendahara koperasi dan ketua koperasi. Tampilan rancangan halaman hasil dapat dilihat pada gambar 3.24.

Gambar 3.24 Rancangan Halaman Hasil

3.6 Kebutuhan Pembuatan Sistem

1. Kebutuhan Perangkat Keras

Perangkat keras adalah alat yang digunakan untuk menunjang dalam pembuatan sistem. Dalam pembuatan sistem ini perangkat keras yang digunakan yaitu laptop dengan spesifikasi:

- a. Processor Intel Core i3
- b. RAM 4 GB
- c. HDD 500 GB
- d. Monitor 14"
- e. Mouse

2. Kebutuhan Perangkat Lunak

Perangkat lunak adalah program atau aplikasi yang digunakan untuk membangun sistem. Perangkat lunak yang dibutuhkan dalam pembuatan sistem ini adalah:

a. Windows 7

b. Web Server : Apache

c. Database Server: MySQL

d. Bahasa Pemrograman: PHP

e. Editor PHP: Edit Plus3

f. Aplikasi server: XAMPP

g. Browser Internet (HTML 5)

h. SQLyog Enterprise

3.7 Evaluasi Sistem

Sistem prediksi (klasifikasi) tidak bisa bekerja 100% benar, maka pada bagian ini akan mengevaluasi hasil perhitungan prediksi. Evaluasi ini menggunakan *Confusion Matrik* yaitu tabel yang digunakan untuk menentukan kinerja suatu model klasifikasi.

Tabel 3.43 merupakan tabel *Confusion Matrik* yang mengambil nilai dari hasil pengujian system

Tabel 3.43 Confusion Matrik

Evaluasi		Keterangan Hasil Prediksi		
		Lancar	Macet	
Kelas Asli	Lancar	2	1	
	Macet	1	1	

Dari hasil prediksi, diketahui:

Jumlah data yang diprediksi secara benar = 3,

Jumlah data yang diprediksi secara salah = 2,

Jumlah prediksi yang dilakukan = 5,

Perhitungan akurasi dan laju error mengacu pada rumus 2.5 untuk akurasi dan rumus 2.6 untuk perhitungan laju error. Maka perhitungan akurasi dan laju errornya adalah sebagai berikut.

$$Akurasi = \frac{3}{5} = 0.6 = 60\%$$
 $Laju\ error = \frac{2}{5} = 0.4 = 40\%$

Dari hasil prediksi diketahui:

TP = 2

FN = 1

TN = 1

FP = 1

Keterangan:

TP: Nilai lancar yang diprediksi secara benar sebagai lancar

FN: Nilai lancar yang diprediksi secara salah sebagai macet

TN: Nilai macet yang diprediksi secara benar sebagai macet

FP: Nilai macet yang diprediksi secara salah sebagai lancar

Perhitungan sensitivitas dan spesifisitas mengacu pada rumus 2.7 untuk perhitungan sensitivitas dan rumus 2.8 untuk perhitungan spesifisitas. Maka perhitungan sensitivitas dan spesifisitas adalah sebagai berikut.

Sensitivitas =
$$\frac{2}{2+1} = \frac{2}{3} = 0,667 = 66,7\%$$

Spesifisitas =
$$\frac{1}{1+1} = \frac{1}{2} = 0.5 = 50\%$$

3.8 Sekenario Pengujian Sistem

Sebelum membuat sistem prediksi kelancaran pembayaran pinjaman anggota koperasi menggunakan teknik data mining dengan metode decision tree C4.5 ini, perlu dilakukan beberapa skenario pengujian sistem terlebih dahulu, seperti kevalidan pada excel agar sistem dapat berjalan sesuai dengan tujuan pembuatannya. Dalam melakukan pengujian digunakan 4 kriteria meliputi : status pernikahan, status rumah, penghasilan, umur. Data yang digunakan untuk pengujian sistem adalah hasil dari klasifikasi data dari Koperasi wanita harum manis desa sirnoboyo kecamatan benjeng kabupaten Gresik.

Diharapkan sistem yang dibuat dapat menghasilkan sistem prediksi yang dapat memberikan informasi yang bermanfaat bagi koperasi wanita desa sirnoboyo dalam menentukan hasil perediksi pembayaran yang akan mendapatkan pinjaman.

1. Pengujian Pertama

Pengujian pertama dilakukan uji coba menggunakan 102 data, dengan jumlah 52 data training dan 50 data uji..

2. Pengujian kedua

Pengujian kedua dilakukan uji coba menggunakan 102 data, dengan jumlah 59 data training dan 43 data uji.

3. Pengujian Ketiga

Pengujian ketiga dilakukan uji coba menggunakan 102 data, dengan jumlah 75 data training dan 27 data uji.

4. Masing-masing pengujian akan dibandingkan hasil asli dengan hasil dari aplikasi menggunakan rumus akurasi yaitu :

$$Akurasi = \frac{\sum hasil\ benar\ dari\ data\ uji}{\sum data\ uji}\ X\ 100\%$$