BAB 3

METODE PENELITIAN

3.1 Tempat dan Waktu Penelitian

Penelitian ini dilaksanakan di kebun percobaan Fakultas Pertanian Universitas Muhammadiyah Gresik di Desa Klangonan, Kecamatan Kebomas, Kabupaten Gresik yang berada pada ketinggian 56 meter di atas permukaan laut (mdpl) dengan tipe iklim A (iklim hujan tropis). Lokasi lahan penelitian sebagai berikut : https://maps.app.goo.gl/UWhwRnVppAkzgw8y7. Penelitian dilakukan mulai bulan Maret 2023 sampai 16 Agustus 2023.

3.2 Alat dan Bahan

Alat penelitian termasuk cangkul, papan label, sarung tangan kain, meteran, , RHS chart, tali rafia, polybag ukuran 30x30 dan alat tulis

Bahan yang digunakan dalam penelitian adalah klon SB27, klon SB28, klon SB30, klon SB31, klon SB32, klon SB33, klon SB34, klon SBHijau, klon SB 200, Klon Bululawang, Klon PS 881 yang diperoleh dari kebun percobaan Fakultas Pertanian dan inokulum jamur *Ustilago scitaminea* diperoleh dari BPTP Surabaya.

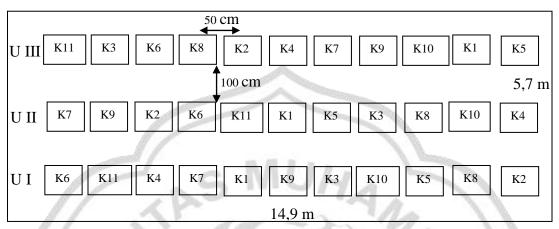
3.3 Rancangan Penelitian

Rancangan penelitian menggunakan Rancangan Acak Lengkap (RAL) satu faktor yaitu 11 macam klon tebu meliputi :

K1: SB27 K7: SB34

K2 : SB28 K8 : SBHijau

K3: SB30 K9: SB200


K4: SB31 K10: PS 881

K5 : SB32 K11 : BULULAWANG

K6: SB33

Masing-masing perlakuan diulang sebanyak 3 kali. Penetapan sampel tanaman sebagai sampel pengamatan dilakukan secara random sampel. Setiap perlakuan ditetapkan 3 sampel dengan jumlah yang diamati sebanyak $33 \times 3 = 99$

tanaman sampel. Setiap ulangan terdapat 11 klon dengan masing-masing berjumlah 9 polybag per klon, sehingga jumlah tanaman per ulangan yaitu 99 polybag. Total populasi tanaman yakni 99 x 3 = 297 tanaman. Denah percobaan disajikan pada gambar 3.1.

 $B \overset{U}{\longleftrightarrow} T$

Gambar 3.1 Denah Percobaan

Keterangan:

K1 : SB27 K5 : SB32 K9 : SB200 K2 : SB28 K6 : SB33 K10 : PS 881

K3 : SB30 K7 : SB34 K11 : Bululawang

K4 : SB31 K8 : SB Hijau

3.4 Prosedur Pelaksanaan

1. Persiapan Lahan

Mempersiapkan alat dan bahan yang dibutuhkan. Polybag yang digunakan berukuran 30x30 yang dapat diisi tanah dengan bobot 3 kg/polybag. Jenis tanah yang digunakan yaitu tanah grumosol bagian lapisan permukaan olah yang berada di lahan hollywood. Sebelum polybag diisi dengan tanah, bagian bawah polybag dilubangi agar akar tanaman tebu bisa menempel di tanah.

Lahan penelitian dibersihkan dari gulma yang tumbuh dengan memberikan gramoxone agar gulma mati. Gulma yang sudah mati dibersihkan dan dicabut. Tanah yang tidak rata diratakan agar penempatan polybag tidak terganggu.

2. Persiapan Tanam dan Penanaman

Tanah dimasukkan kedalam polybag sampai menyisakan ¼ dari bagian atas. Bibit tebu diambil dari batang tanaman tebu berumur ± 11 bulan yang sudah ditanam di lahan hollywood sebelumnya, batang tanaman lalu dipotong setiap satu mata tunas dengan panjang ± 10 cm. Bibit yang sudah dipotong lalu diseleksi mana tunas yang sehat dan memenuhi syarat, setelah itu dilakukan perendaman menggunakan Zat Pengatur Tumbuh selama 2 hari 2 malam. Bibit yang sudah direndam kemudian ditanam di polybag dengan 1 bibit tebu per polybag. Siram polybag yang sudah ditanami sampai jenuh.

3. Pemeliharaan

Tebu disiram setiap hari agar pertumbuhannya baik dan tidak terganggu. Pemupukan tebu bisa dilakukan pada 7HST dengan menggunakan pupuk urea dengan dosis 0,21g/polybag.

4. Pemberian Penyakit Luka api

Pemberian inokulum penyakit luka api diberikan pada permukaan tanah polybag pada tanaman tebu berumur 8 MST. Pengenceran inokulum setiap tanaman dalam satu polybag dijelaskan pada lampiran 1. Pengamatan intensitas serangan dilakukan 2 minggu sekali setelah pemberian inokulum penyakit luka api.

3.5 Variabel Pengamatan

Dalam kegiatan penelitian skripsi ini, ada dua variabel pengamatan yang diuji yaitu variabel kualitatif dan variabel kuantitatif. Pada pengamatan ini variabel yang di uji disajikan dalam tabel yang sudah tersedia.

3.5.1 Variabel kualitatif

Variabel kualitatif merujuk pada data berupa kata-kata yang behubungan dengan karakteristik dalam bentuk sifat. Adapun variabel pengamatan yang termasuk dalam variabel kualitatif sebagai berikut :

1. Batang Tebu

Batang tebu beruas-ruas yang dibatasi oleh buku-buku dimana terdapat mata sebagai tempat keluarnya akar dan akan tumbuh menjadi kuncup tanaman baru. Dalam mempelajari karakteristik morfologi batang tebu, bentuk ruas dan

karakteristik yang terdapat pada ruas harus diperhatikan. Tabel 3.1 menunjukkan bagaimana pengamatan variabel batang tebu dibagi.

Table 3.1 Variabel Pengamatan Batang Tebu

No	Variabel	M. I.D.	A1 . 1	Keterangan	
	Pengamatan	Metode Pengamatan	Alat ukur		
1	Tinggi	Pengamatan tinggi	Meteran dan alat	Cm	
	batang	batang dilakukan	tulis		
		dengan mengukur			
		sampel batang tebu			
		mulai dari permukaan			
		tanah hingga bagian			
		segitiga daun tertinggi			
2	Warna	Ruas batang tebu	Alat tulis, RHS	Warna	
	batang	dibersihkan lapisan	colour Chart,		
		lilinnya kemudian	kamera, kain		
		diamati warnanya	background		
3	Bentuk	Mengamati bentuk pada	Alat tulis,	Konis, silindris,	
	batang	ruas-ruas batang tebu.	kamera, kain	cembung, atau	
			background,	lainnnya	
			panduan indikator		
			morfologi		
			(lampiran 2)		
4	Cincin	Mengamati bagian	Alat tulis, kain	Di bawah,	
	tumbuh	ujung mata tunas	background,	menyinggung,	
		terhadap garis cincin	kamera	di atas	
		tumbuhnya			
5	Lapisan lilin	Mengamati lapisan lilin	Alat tulis, kain	Tidak ada atau	
		pada bagian batangnya	background,	sangat tipis,	
			kamera	tipis, sedang,	
				tebal	
6	Alur mata	Mengamati kedalaman	Alat tulis, kain	Tidak ada atau	

 alur mata	pada bag	ian background,	sangat dangkal,
ruas-ruas b	atangnya	kamera	dangkal,
			sedang, dalam

2. Daun Tebu

Daun tebu terdiri dari helai daun dan pelepah daun tanpa tangkai. Ketika mempelajari morfologi daun tebu, penting untuk memperhatikan bagian-bagian daun, bulu-bulu bidang punggung dan telinga bagian dalam. Tabel 3.2 menunjukkan bagaimana pengamatan variabel daun tebu dibagi.

Table 3.2 Variabel Pengamatan Daun Tebu

	200		8 27 8	70.	
No	Variabel	Metode Pengamatan	Alat ukur	Keterangan	
110	Pengamatan	Wictode I engamatan	That area		
1	Ukuran	Memilih daun yang	Penggaris, alat	Cm	
	lebar daun	melengkung, ukur lebar	tulis, kain		
		pangkal, tengah, dan	background		
		ujungnya untuk			
		mendapatkan lebar daun			
		rata-rata.			
2	Lengkung	Mengamati bentuk	Kamera, alat	Tegak,	
	daun	lengkung pada daun tebu	tulis, kain	melengkung di	
			background	ujung,	
				melengkung,	
				melengkung	
				dari dasar	
3	Telinga	Mengamati bentuk telinga	Kamera, alat	Peralihan, delta,	
	daun	dalam dan telinga luar	tulis, kain	dentoid,	
		pada pelepah daun	background,	unciform,	
			panduan sifat	calcariform,	
			morfologi	lanset, falcate	
			(lampiran 2)		

4	Lepas daun	Mengamati pelepah daun	Kmera, alat	Lemah, sedang,
	(klentek)	pada bagian pelekatan di	tulis, kain	kuat
		ruas batangnya	background	
5	Bulu	Mengamati ada atau	Kaca pembesar,	Tidak ada atau
	bidang	tidaknya bulu bidang	alat tulis,	sangat sedikit,
	punggung	punggung	kamera, kain	sedikit, sedang,
			background	banyak, sangat
				banyak

3. Mata tunas Tebu

Mata tunas adalah kuncup yang terletak di ruas batang, yang bergantian dari sisi ke sisi dari pangkal batang ke ujung. Saat mempelajari karakteristik mata tunas tebu, perhatikan bagian rambut jambul, tepi sayap mata, dan rambut di tepi basal mata. Berbagai pengamatan mata tunas tebu diklasifikasikan seperti yang ditunjukkan pada Tabel 3.3.

Table 3.3 Variabel Pengamatan Mata Tunas

No	Variabel Pengamatan	Metode Pengamatan	Alat ukur	Keterangan	
1	Titik	Mengamati ada atau	Kamera, alat	Tidak ada atau	
	tumbuh	tidaknya titik tumbuh	tulis, kain	ada	
		pada mata tunasnya	background		
2	Rambut	Mengamati ada atau	Kamera, alat	Tidak ada atau	
	jambul	tidaknya rambut jambul	tulis, kain	ada	
		pada mata tunas	background		
3	Rambut	Mengamati ada atau	Kaca pembesar,	Tidak ada atau	
	tepi basal	tidaknya rambut tepi	alat tulis, kain	ada	
		basal pada mata tunas	background		
4	Sayap mata	Mengamati bentuk mata	Kamera, alat	Segitiga sama	
		tunas dan	tulis, kain	kaki, oval,	
		mengidentifikasi	background,	obovate,	
		morfologinya	panduan sifat	segilima, jajar	

				morfologi		genjang, bulat,	
				(lampiran 2)		bulat	telur,
						persegi	empat,
						beaked	
5	Letak titik	Mengamati letak	titik	Kamera,	alat	Dasar	mata,
	tumbuh	tumbuh pada	mata	tulis,	kain	ujung	mata,
		tunasnya		background		samping	mata

3.5.2 Variabel Kuantitatif

Variabel kuantitatif merujuk pada data-data berupa angka atau bilangan. Adapun variabel pengamatan yang termasuk dalam variabel kuantitatif sebagai berikut:

1. Gejala serangan patogen Ustilago scitaminea Sydow

Gejala serangan patogen *Ustilago scitaminea* Sydow pada tanaman tebu dapat dilihat dari tanaman tebu yang telah berumur 1 bulan keatas. Ciri-ciri gejala serangan *Ustilago scitaminea* Sydow meliputi, tanaman kerdil, rumpun anakan banyak, tidak tumbuh batang tebu, tinggi hanya mampu 1-2 meter saja, tidak menghasilkan batang tebu.

2. Jumlah Anakan

Pengamatan jumlah anakan dilakukan dengan cara menghitung setiap anakan yan muncul pada tiap rumpunnya. Pengamatan dilakukan setiap 2 minggu sekali setelah tebu berumur 6 MST.

3. Tinggi Batang (Cm)

Tinggi tanaman dapat diukur dengan menggunakan penggaris centimeter, pengukuran dilakukan di atas permukaan tanah hingga bagian segitiga daun tertinggi pada rumpun tanaman tebu. Pengukuran tinggi tanaman dilakukan setiap 2 minggu sekali sampai pembibitan telah berumur 56 hari atau 8 minggu setelah muncul tunas.

4. Jumlah Daun (Helai)

Penghitungan jumlah daun dimulai dengan munculnya daun pada bibit tanaman tebu. Cara menghitung jumlah daun yaitu dengan cara visual. Pengamatan

ini dilakukan 1 kali dalam seminggu hingga bibit tanaman berumur 56 HST.

5. Intensitas Serangan Penyakit (%)

Intensitas serangan penyakit pada bagal tebu dapat diamati selama 1 kali setiap 2 minggu yang diamati selama 2 bulan atau 56 HST. Pengukuran dinyatakan dengan menggunakan rumus(DITJEN TP, 2018):

$$I = \frac{n}{N} \times 100\%$$

Keterangan:

I = Intensitas serangan (%)

n = Jumlah tanaman terserang

N = Jumlah tanaman yang diamati

Kategori serangan ditentukan sebagai berikut : (Direktorat Perlindungan Tanaman Perkebunan)

Tidak ada serangan/kerusakan jika nilai TS = 0%

Serangan/ kerusakan ringan jika nilai TS ≤ 25%

Serangan/kerusakan sedang jika nilai TS 25 - 50%

Serangan/kerusakan berat jika nilai TS 50 - 85%

3.6 Analisis Data

Data yang dikumpulkan kemudian dianalisis dengan metode berikut:

3.6.1 Analisis Of Variance (Anova) menurut Sir Ronald Fisher, 1925

Prinsip perhitungan yang digunakan dalam analisis One Way Anova terbilang sangat sederhana. Analisis sidik ragam satu jalur (One Way Anova) digunakan untuk mengetahui perbedaan nyata perlakuan berdasarkan uji F. Varian antar perlakuan (between) dan variasi dalam perlakuan (within) membentuk perbedaan total. Rumus perhitungan ANOVA satu jalur sebagai berikut:

$$Yij = \mu + \tau i + \beta j + \epsilon ij$$
; $i = 1, 2, 3 ... t j = 1, 2,$

Keterangan:

Yij : respon atau nilai pengamatan dari perlakuan ke i dan ulangan ke j

μ : nilai tengah umum

τi : pengaruh perlakuan ke-i

ßj : pengaruh blok ke-j

ε ij : pengaruh galat percobaan dari perlakuan ke-i dan ulangan ke-

3.6.2 Uji BNT menurut Fisher, 1925

Uji BNT 5% adalah tahap uji rentang rata-rata perbedaan perlakuan yang sangat sederhana dan umum digunakan. Jika perlakuan pada analisis ANOVA 5% terdapat perbedaan nyata, maka dilakukan uji lanjut BNT 5%. Rumus uji lanjut BNT 5% seperti berikut (Fisher, 1935):

$$BNT = \sqrt{\frac{2 * KTG}{r}}$$

Keterangan:

KTG: Kuadrat Tengah Galat

r : jumlah ulangan pada tiap nilai tengah perlakuan yang dibandingkan

3.6.3 Uji Korelasi menurut Karl Pearson, awal 1900

Nilai koefisien korelasi (r) berada diantara -1 dan +1 (-1 \leq r \leq +1). Hal tersebut berarti bahwa jika nilai r positif, maka antar variabel saling berkolerasi positif. Nilai r jika semkin mendekat pada angka +1 maka korelasinya semakin kuat begitu juga sebaliknya. Jika nilai r menunjukkan hasil negatif, maka antar variabel berkolerasi negatif. Nilai r yang semakin mendekat pada angka -1 menunjukkan semakin kuat korelasinya begitu juga sebaliknya. Apabila nilai r nol (0), maka antar variabelnya tidak menunjukkan korelasi. Apabila r bernilai -1 atau +1 maka variabel berkolerasi negatif atau positif sempurna.

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{(n\sum(x)^2 - (\sum x)^2)(n\sum(y)^2 - (\sum y)^2)}}$$

Keterangan:

r : Nilai koefisien korelasi

 $\sum y$: Jumlah pengamatan variable Y

 $\sum x$: Jumlah pengamatan variable X

 $\sum xy$: Jumlah hasil perkalian variable X dan Y

 $(\sum x^2)$: Jumlah kuadrat dan pengamatan variable X

 $(\sum x)^2$: Jumlah kuadrat dari jumlah pengamatan variable X

 $(\sum y^2)$: Jumlah kuadrat dan pengamatan variable Y

 $(\sum y)^2$: Jumlah kuadrat dari jumlah pengamatan variable Y

n : Jumlah pasangan pengamatan X dan Y

Menurut Colton keeratan hubungan korelasi dikategorikan sebagai berikut:

r = 0,00-0,25 = tidak ada korelasi/sangat lemah

r = 0.26-0.50 = korelasi sedang

r = 0.51-0.75 = korelasi kuat

r = 0.76-0.99 = korelasi sangat kuat

r = 1 = korelasi sempurna

3.6.4 Heritabilitas

Nilai heritabilitas dapat menentukan kapan dan bagaimana cara menyeleksi suatu sifat. Ini disebabkan oleh fakta bahwa nilai heritabilitas memberikan gambaran tentang seberapa besar variasi fenotip dan variasi genetik yang dapat diwariskan kepada keturunannya. Nilai heritabilitas dapat berkisar dari 0 hingga 1; nilai 0 menunjukkan variabilitas fenotip yang disebabkan oleh faktor lingkungan, dan nilai 1 menunjukkan keragaman genotip yang disebabkan oleh faktor genetik. Seleksi massa atau seleksi galur murni digunakan untuk generasi pertama jika nilai heritabilitasnya tinggi. Jika nilai heritabilitas rendah, seleksi dilakukan pada generasi selanjutnya dengan menggunakan metode keturunan, pemeriksaan keturunan tunggal, dan tes keturunan pada generasi berikutnya (Aryana, 2010). Pendugaan nilai heritabilitas dalam arti luas, dihitung dengan formulasi (Allard, 1960) sebagai berikut:

$$H^2 = \frac{\sigma_g^2}{\sigma_p^2}$$

Keterangan:

H2 = Heritabilitas dalam arti luas

 σ_q^2 = Ragam genotip

 σ_n^2 = Ragam fenotip

Kriteria nilai heritabilitas rendah (<0,20); cukup tinggi (0,20-0,50); tinggi (>0,50). Namun nilai-nilai ini sangat tergantung dari metode dan populasi yang digunakan.

3.6.5 Keragaman Genetik

Sangat penting untuk memahami nilai keragaman genetik, terutama bagi pemulia, karena dapat diwariskan untuk keturunan. Meskipun demikian, tidak semua jenis genetik dapat diwariskan. Ini disebabkan oleh fakta bahwa keragaman genetik dihasilkan dari penjumlahan ragam aditif ($\sigma^2 A$), ragam dominan ($\sigma^2 D$), dan ragam epistasis ($\sigma^2 I$). Ragam aditif adalah satu-satunya ragam yang dapat diturunkan pada turunan berikutnya karena ragam ini berasal dari genotipe yang lokusnya homozigot, sehingga turunannya mewarisi genotipe yang selalu sama dengan tetuanya (Thoyibah, 2019).

Nilai koefisien keragaman genetik (KKG) dan koefisien keragaman fenotip (KKF) dapat digunakan untuk menentukan tingkat keragaman pada variabel kuantitatif. Menurut Singh dan Chaudhary (1985), perhitungan KKG dan KKF

berikut:

KKG =
$$\frac{\sqrt{\sigma^2 g}}{\bar{x}}$$
 x 100% dimana $\sigma^2 g = \frac{M_2 - M_1}{r}$

KKF =
$$\frac{\sqrt{\sigma^2 p}}{\hat{x}}$$
 x 100% dimana $\sigma^2 p = \sigma^2 g + \sigma^2 F$

Keterangan:

KKG: Koefisien Keragaman Genetik

KKF: Koefisien Keragaman Fenotip

 σ^2 g : Ragam Genotip

 $\sigma^2 p$: Ragam Fenotip

 $\sigma^2 E$: Ragam Lingkungan

 \bar{x} : Rata-rata seluruh populasi tiap sifat

M₂ : Kuadrat tengah varietas/klon

 M_1 : Kuadrat tengah galat