Bilangan : Jurnal Ilmiah Matematika, Kebumian dan Angkasa Volume. 3 Nomor. 5 Oktober 2025

e-ISSN: 3032-7113; p-ISSN: 3032-6389, Hal. 67-78
DOI: https://doi.org/10.62383/bilangan.v3i5.789
Tersedia: https://journal.arimsi.or.id/index.php/Bilangan

Analisis Kemampuan Penalaran Matematis Peserta Didik SMP Ditinjau dari Kemandirian Belajar

Saffanah Ziyan Salsabiela^{1*}, Fatimatul Khikmiyah², Syaiful Huda³

¹⁻³Universitas Muhammadiyah Gresik, Indonesia **Penulis Korespondensi: saffanahzs6@gmail.com*¹

Abstract. This study aims to analyze junior high school students' mathematical reasoning abilities in terms of their levels of learning independence. The research employed a descriptive qualitative approach involving three ninth-grade students from UPT SMP Negeri 5 Gresik, each representing high, medium, and low levels of learning independence. Data were collected through a self-regulated learning questionnaire, a mathematical reasoning test based on the topic of Systems of Linear Equations in Two Variables (SPLDV), and semi-structured interviews. Data analysis followed Miles and Huberman's interactive model, consisting of data reduction, data display, and conclusion drawing. The results revealed that students with high learning independence demonstrated strong reasoning skills across all seven indicators of mathematical reasoning (representing statements, making conjectures, performing manipulations, constructing proofs, drawing conclusions, verifying arguments, and identifying patterns). Students with medium learning independence fulfilled only some indicators, while those with low learning independence could only make simple conjectures without systematic reasoning. These findings highlight that learning independence plays a crucial role in developing mathematical reasoning, as it enables students to regulate their thinking processes, evaluate solutions, and correct errors. Teachers are encouraged to integrate learning strategies that foster self-regulation—such as the CORE and Flipped Classroom models—to enhance students' mathematical reasoning skills.

Keywords: independent learning, mathematical reasoning, mathematics learning, qualitative approach, thinking skills

Abstrak. Penelitian ini bertujuan untuk menganalisis kemampuan penalaran matematis siswa SMP ditinjau dari tingkat kemandirian belajarnya. Penelitian menggunakan pendekatan kualitatif deskriptif dengan subjek tiga siswa kelas IX UPT SMP Negeri 5 Gresik yang masing-masing mewakili kategori kemandirian belajar tinggi, sedang, dan rendah. Data dikumpulkan melalui kuesioner kemandirian belajar, tes penalaran matematis berbasis materi Sistem Persamaan Linear Dua Variabel (SPLDV), dan wawancara semi-terstruktur. Analisis data dilakukan menggunakan model interaktif Miles dan Huberman, meliputi reduksi data, penyajian data, dan penarikan kesimpulan. Hasil penelitian menunjukkan bahwa siswa dengan kemandirian belajar tinggi mampu memenuhi seluruh tujuh indikator penalaran matematis (menyajikan pernyataan, mengajukan dugaan, melakukan manipulasi, menyusun bukti, menarik kesimpulan, memeriksa kebenaran argumen, dan menentukan pola). Siswa dengan kemandirian belajar sedang hanya mampu memenuhi sebagian indikator, sedangkan siswa dengan kemandirian belajar rendah hanya mampu mengajukan dugaan tanpa penalaran sistematis. Temuan ini menegaskan bahwa kemandirian belajar berperan penting dalam mengembangkan penalaran matematis, karena membantu siswa mengatur proses berpikir, mengevaluasi solusi, dan memperbaiki kesalahan. Guru disarankan untuk mengintegrasikan strategi pembelajaran yang menumbuhkan kemandirian belajar, seperti model CORE atau Flipped Classroom, guna meningkatkan kemampuan penalaran matematis siswa.

Kata kunci: kemampuan berpikir, kemandirian belajar, pembelajaran matematika, penalaran matematis, pendekatan kualitatif

1. LATAR BELAKANG

Pada abad ke-21, pendidikan matematika tidak hanya menekankan penguasaan konsep dan prosedur, tetapi juga pengembangan kemampuan berpikir tingkat tinggi (Higher Order Thinking Skills/HOTS), seperti berpikir kritis, kreatif, dan logis. Kemampuan-kemampuan tersebut dapat dikembangkan melalui penalaran matematis, yaitu proses mental dalam menarik kesimpulan berdasarkan fakta, prinsip, atau pernyataan yang telah terbukti kebenarannya (Kondo et al., 2018; Ratau, 2016; Setiawan, 2016; Paokuma et al., 2023). Menurut BSKAP

Naskah Masuk: 27 Agustus 2025; Revisi: 13 September 2025; Diterima: 11 Oktober 2025;

Terbit: 16 Oktober 2025

Kemendikbudristek, matematika mencakup dua elemen utama: elemen proses (penalaran dan pembuktian, pemecahan masalah, komunikasi, koneksi, dan representasi) dan elemen konten (bilangan, aljabar, geometri, pengukuran, analisis data, dan peluang). Di antara elemen proses tersebut, penalaran matematis memiliki peran sentral karena menjadi fondasi dalam memahami, menganalisis, dan menyelesaikan berbagai bentuk masalah matematika maupun kontekstual dalam kehidupan sehari-hari (Lestari et al., 2018; Kadarisma et al., 2019; Wulandari & Machromah, 2024).

Van de Walle dkk. (2010), sebagaimana dikutip oleh Sunaisah dkk. (2024), menyatakan bahwa siswa dengan penalaran matematis yang baik mampu: (1) memahami informasi dalam soal cerita, (2) memodelkan masalah ke dalam bentuk matematika, (3) menyelesaikan operasi hitung secara tepat, dan (4) menjelaskan strategi penyelesaiannya secara logis. Namun, realitas di lapangan menunjukkan bahwa kemampuan penalaran matematis siswa masih rendah, baik di jenjang SMP (Aulia & Abadi, 2022), SMA (Muslimin & Sunardi, 2019), maupun SMK (Hesti Anjani W, 2022). Padahal, menurut teori perkembangan kognitif Piaget (2000), siswa usia 11 tahun ke atas—yang umumnya berada di jenjang SMP—sudah memasuki tahap operasional formal, di mana mereka seharusnya mampu berpikir secara sistematis, abstrak, dan deduktif.

Upaya peningkatan penalaran matematis telah banyak dilakukan melalui berbagai model pembelajaran inovatif. Marfu'ah dkk. (2022) mengidentifikasi enam model efektif, antara lain Problem Based Learning, Pendekatan Matematika Realistik Indonesia (PMRI), Lesson Study for Learning Community, Novick, Connected Mathematics Project, dan Discovery Learning. Selain itu, model CORE (Connecting, Organizing, Reflecting, Extending) terbukti mendorong siswa menghubungkan dan mengembangkan informasi secara kritis (Konita et al., 2019), sementara Flipped Classroom memfasilitasi siswa dalam menganalisis fenomena nyata untuk menemukan solusi (Purwijaya et al., 2023).

Di samping model pembelajaran, kemandirian belajar juga menjadi faktor krusial. Kemandirian belajar merujuk pada kemampuan siswa dalam merancang, mengatur, memantau, dan mengevaluasi proses belajarnya sendiri (Zimmerman & Schunk, 1989; Hidayati & Listyani, 2010). Siswa yang mandiri mampu mencari informasi dari berbagai sumber, mengelola waktu, menetapkan tujuan, serta merefleksikan kemajuan belajarnya. Kemandirian belajar tidak hanya meningkatkan motivasi internal, tetapi juga mendukung pengembangan keterampilan berpikir kritis, kreatif, dan pemecahan masalah (Afid et al., 2024; Izzati Irawan et al., 2024), sekaligus mencegah perilaku belajar pasif seperti menyontek, bolos, atau belajar hanya menjelang ujian (Saefuddin et al., 2022).

Beberapa penelitian menunjukkan adanya hubungan positif antara kemandirian belajar dan penalaran matematis. Ansori dkk. (2019) menemukan hubungan linear antara keduanya, sementara Zannati dkk. (2018) melaporkan kontribusi kemandirian belajar terhadap penalaran matematis sebesar 57,33%. Namun, temuan ini tidak bersifat universal; Pratama dkk. (2024) justru menyatakan bahwa hubungan tersebut tidak signifikan dalam konteks tertentu. Ketidakkonsistenan hasil ini menunjukkan perlunya eksplorasi lebih mendalam melalui pendekatan kualitatif yang memungkinkan pemahaman kontekstual dan holistik terhadap dinamika antara kemandirian belajar dan penalaran matematis.

Oleh karena itu, penelitian ini bertujuan untuk menganalisis kemampuan penalaran matematis siswa SMP ditinjau dari tingkat kemandirian belajarnya, yaitu tinggi, sedang, dan rendah. Melalui pendekatan kualitatif, penelitian ini diharapkan dapat memberikan gambaran mendalam tentang bagaimana karakteristik penalaran matematis muncul dalam konteks kemandirian belajar yang berbeda, serta memberikan rekomendasi pedagogis bagi guru dan pemangku kebijakan dalam merancang pembelajaran yang lebih responsif terhadap kebutuhan kognitif dan afektif siswa.

2. KAJIAN TEORITIS

Penalaran Matematis

Penalaran matematis merupakan salah satu komponen inti dalam pembelajaran matematika abad ke-21. Kemampuan ini merujuk pada proses berpikir logis dalam menarik kesimpulan yang valid berdasarkan fakta, prinsip, pola, atau hubungan matematis yang telah diketahui (Paokuma dkk., 2023; Setiawan, 2016). Menurut Peraturan Dirjen Dikdasmen Depdiknas (2004), penalaran matematis mencakup kemampuan menyajikan ide matematika dalam berbagai bentuk (lisan, tulisan, gambar), mengajukan dugaan, melakukan manipulasi matematika, menarik kesimpulan, memeriksa kebenaran argumen, serta menentukan pola untuk membuat generalisasi. Dalam praktiknya, penalaran matematis dibagi menjadi dua jenis: penalaran induktif, yaitu menarik kesimpulan umum dari kasus-kasus khusus (misalnya melalui pola atau analogi), dan penalaran deduktif, yaitu menurunkan kesimpulan khusus dari prinsip atau teorema umum (Wardhani, 2008; Mulyana, 2015). Kedua jenis ini saling melengkapi dalam membangun pemahaman matematis yang utuh.

Kemandirian Belajar (Self-Regulated Learning)

Di sisi lain, kemandirian belajar (*self-regulated learning*) menjadi faktor penting yang mendukung pengembangan penalaran tersebut. Kemandirian belajar didefinisikan sebagai kemampuan peserta didik untuk secara aktif merencanakan, memantau, mengatur strategi, dan mengevaluasi proses belajarnya sendiri (Zimmerman & Schunk, 1989; Hidayati & Listyani, 2010). Siswa yang mandiri tidak hanya mampu belajar tanpa pengawasan langsung, tetapi juga memiliki inisiatif, disiplin, rasa tanggung jawab, kepercayaan diri, dan kontrol diri terhadap aktivitas belajarnya. Indikator kemandirian belajar yang digunakan dalam penelitian ini meliputi: (1) ketidaktergantungan terhadap orang lain, (2) kepercayaan diri, (3) perilaku disiplin, (4) rasa tanggung jawab, (5) inisiatif sendiri, dan (6) kontrol diri (Hidayati & Listyani, 2010).

Hubungan Antara Kemandirian Belajar dan Penalaran Matematis

Hubungan antara kemandirian belajar dan penalaran matematis telah dikaji dalam berbagai penelitian. Zannati dkk. (2018) menemukan kontribusi kemandirian belajar terhadap penalaran matematis sebesar 57,33%, sementara Ansori dkk. (2019) melaporkan adanya hubungan linear positif antara keduanya. Namun, Pratama dkk. (2024) justru menyatakan bahwa hubungan tersebut tidak selalu signifikan, tergantung pada konteks pembelajaran dan karakteristik siswa. Perbedaan temuan ini menunjukkan perlunya eksplorasi lebih mendalam melalui pendekatan kualitatif.

Penelitian ini berbeda dari studi terdahulu dalam dua hal utama. Pertama, fokus utamanya adalah menganalisis karakteristik penalaran matematis siswa SMP berdasarkan tingkat kemandirian belajarnya tinggi, sedang, dan rendah bukan hanya menguji hubungan statistik. Kedua, penelitian ini menggunakan pendekatan kualitatif untuk memahami proses berpikir siswa secara holistik, sehingga dapat mengungkap dinamika yang tidak terlihat dalam data kuantitatif. Dengan demikian, penelitian ini diharapkan memberikan wawasan baru bagi guru dan peneliti dalam merancang pembelajaran yang responsif terhadap kebutuhan kognitif dan afektif siswa.

3. METODE PENELITIAN

Penelitian ini menggunakan pendekatan kualitatif deskriptif, yang bertujuan untuk menggambarkan secara mendalam dan sistematis kemampuan penalaran matematis peserta didik SMP berdasarkan tingkat kemandirian belajar mereka—yaitu kategori tinggi, sedang, dan rendah. Pendekatan kualitatif dipilih karena memungkinkan peneliti untuk memahami proses berpikir siswa dalam konteks alamiah, melalui eksplorasi langsung terhadap respons, strategi,

dan argumen yang muncul saat menyelesaikan masalah matematika (Rachman et al., 2016). Penelitian ini tidak bertujuan menguji hipotesis, melainkan memberikan gambaran utuh tentang bagaimana kemandirian belajar memengaruhi kualitas penalaran matematis.

Subjek penelitian dipilih dari kelas IX UPT SMP Negeri 5 Gresik, Kabupaten Gresik, pada semester genap tahun ajaran 2024/2025. Pemilihan subjek dilakukan secara bertahap. Pertama, peneliti melakukan observasi dan wawancara dengan guru matematika untuk menentukan kelas dan materi yang sesuai; dipilih materi Sistem Persamaan Linear Dua Variabel (SPLDV) karena telah dipelajari secara tuntas oleh siswa. Kedua, seluruh siswa kelas tersebut (n = 31) diberikan kuesioner kemandirian belajar yang terdiri dari 20 butir pernyataan (13 positif dan 7 negatif) dengan skala Likert 1–5. Instrumen ini diadopsi dari Mulyani et al. (2020), yang telah teruji validitas (r > 0,361) dan reliabilitasnya ($\alpha \ge 0,70$). Skor total dihitung dan dikategorikan menjadi tiga kelompok berdasarkan kriteria Asmawati et al. (2019): tinggi (>74), sedang (60–74), dan rendah (<60). Dari masing-masing kategori, dipilih satu siswa representatif berdasarkan skor ekstrem (tertinggi, rata-rata, terendah), sehingga diperoleh tiga subjek penelitian.

Pengumpulan data dilakukan melalui tiga instrumen utama: (1) kuesioner kemandirian belajar, (2) tes penalaran matematis, dan (3) pedoman wawancara semi-terstruktur. Tes penalaran terdiri dari dua soal uraian kontekstual berbasis SPLDV, yang dirancang sesuai dengan tujuh indikator penalaran matematis menurut Peraturan Dirjen Dikdasmen Depdiknas No. 506/C/Kep/PP/2004, antara lain: menyajikan pernyataan matematika, mengajukan dugaan, menarik kesimpulan, memeriksa validitas argumen, dan membuat generalisasi. Soal divalidasi oleh satu dosen pendidikan matematika dan satu guru matematika SMP. Tes dilaksanakan dua kali (dengan variasi angka pada soal) untuk memastikan konsistensi respons. Setelah setiap tes, dilakukan wawancara berbasis tugas untuk menggali proses berpikir subjek, strategi penyelesaian, alasan di balik jawaban, serta hambatan yang dialami.

Keabsahan data dijamin melalui triangulasi waktu, yaitu dengan membandingkan data dari dua sesi tes dan wawancara yang berbeda. Selain itu, peneliti juga menggunakan dokumentasi berupa rekaman audio dan foto sebagai pendukung analisis. Analisis data mengikuti model interaktif Miles dan Huberman (dalam Sari, 2021), yang terdiri atas tiga tahap: (1) reduksi data, yaitu seleksi dan penyederhanaan transkrip wawancara serta skor tes berdasarkan indikator penalaran; (2) penyajian data, dalam bentuk narasi tematik yang menggambarkan profil penalaran tiap subjek; dan (3) penarikan kesimpulan, yaitu interpretasi pola penalaran matematis berdasarkan tingkat kemandirian belajar.

Seluruh prosedur penelitian dilaksanakan dalam tiga tahap: persiapan (koordinasi sekolah, validasi instrumen), pelaksanaan (pemberian kuesioner, tes, dan wawancara), serta analisis data. Dengan pendekatan ini, penelitian ini diharapkan mampu memberikan gambaran mendalam tentang hubungan antara kemandirian belajar dan kualitas penalaran matematis siswa SMP.

4. HASIL DAN PEMBAHASAN

Deskripsi Subjek Penelitian

Penelitian ini melibatkan 31 siswa kelas IX F di UPT SMP Negeri 5 Gresik. Melalui kuesioner kemandirian belajar (20 pernyataan, valid & reliabel), siswa dikelompokkan menjadi tiga kategori: tinggi (skor > 74), sedang (60 < skor ≤ 74), dan rendah (20 < skor ≤ 60). Dari hasil pengelompokan, dipilih satu subjek dari masing-masing kategori:

- a. SKBT (Kemandirian Belajar Tinggi): Siswa perempuan dengan skor 95.
- b. SKBS (Kemandirian Belajar Sedang): Siswa perempuan dengan skor 70.
- c. SKBR (Kemandirian Belajar Rendah): Siswa perempuan dengan skor 54.

Ketiga subjek kemudian mengikuti dua sesi tes penalaran matematis (materi SPLDV) dan wawancara mendalam untuk memvalidasi jawaban tertulisnya.

Hasil Analisis Penalaran Matematis

Berdasarkan analisis data tes dan wawancara, kemampuan penalaran matematis ketiga subjek dibandingkan berdasarkan tujuh indikator standar penalaran matematis (Depdiknas, 2004).

1. Subjek dengan Kemandirian Belajar Tinggi (SKBT)

Subjek SKBT menunjukkan kemampuan penalaran matematis yang sangat baik pada seluruh tujuh indikator. Ia mampu menyajikan pernyataan matematika secara lisan, tertulis, dan visual (diagram batang yang sistematis dengan sumbu jelas dan label nilai). Ia juga mengajukan dugaan yang logis dan sesuai konteks (misalnya, harga tomat $3\times$ harga cabe), lalu melakukan manipulasi matematika secara akurat menggunakan metode substitusi. SKBT menyusun bukti dan memberikan alasan yang runtut, menarik kesimpulan berdasarkan perhitungan valid, memeriksa kesahihan argumen dengan memverifikasi hasil substitusi terhadap soal, serta menentukan pola (misalnya, x=3y) dan membuat generalisasi dalam bentuk aljabar. Kemampuan ini mencerminkan pemahaman konseptual yang kuat, kontrol diri dalam proses berpikir, serta keterampilan reflektif yang tinggi—karakteristik khas siswa mandiri yang mampu mengatur, memantau, dan mengevaluasi proses belajarnya sendiri.

2. Subjek dengan Kemandirian Belajar Sedang (SKBS)

SKBS hanya mampu memenuhi sebagian indikator penalaran matematis. Ia cukup baik dalam menyajikan pernyataan matematika (menggunakan simbol x, y, dan diagram sederhana) dan menyusun bukti untuk soal yang sudah dikuasai. Namun, ia gagal mengajukan dugaan yang logis karena tidak memperhatikan hubungan perbandingan dalam soal. Ia juga tidak mampu melakukan manipulasi matematika karena lupa prosedur substitusi, sehingga tidak bisa menarik kesimpulan, memeriksa argumen, maupun menentukan pola. Meski memahami soal secara permukaan, kurangnya strategi belajar mandiri membuatnya bergantung pada ingatan jangka pendek dan mudah kehilangan arah saat menghadapi prosedur kompleks.

3. Subjek dengan Kemandirian Belajar Rendah (SKBR)

SKBR hanya mampu mengajukan dugaan yang benar (misalnya, harga tomat = Rp9.000 dan cabe = Rp3.000), tetapi gagal pada enam indikator lainnya. Ia tidak mampu menyajikan pernyataan matematika secara sistematis (diagram tidak jelas, simbol keliru), tidak melakukan manipulasi matematika karena lupa metode substitusi, dan tidak menyusun bukti atau menarik kesimpulan. Meski dugaannya benar, ia tidak memverifikasi kebenarannya dan tidak mengenali pola dalam soal. Saat wawancara, ia sering menjawab "lupa" atau "tidak tahu", menunjukkan ketidakmampuan mengatur proses berpikirnya sendiri. Hal ini mencerminkan ketergantungan tinggi pada guru, minimnya inisiatif, dan lemahnya kontrol diri—ciri khas kemandirian belajar rendah yang menghambat pengembangan penalaran matematis.

Tabel 1. Perbedaan Penalaran Matematis Ditinjau dari Kemandirian Belajar

Indikator Penalaran Matematis	SKBT	SKBS	SKBT
Menyajikan pernyataan matematika	Lengkap, detail, dan dapat menjelaskan dengan lantang.	Singkat, menggunakan notasi "k", tapi bisa menjelaskan.	Singkat, gambar tidak sistematis, tidak bisa menjelaskan.
Mengajukan dugaan	Benar, logis, dan dapat membuktikannya.	Salah, hanya menebak tanpa dasar.	Benar, tapi tidak bisa menjelaskan prosesnya.
Melakukan manipulasi matematika	Tepat, sistematis, menggunakan metode substitusi.	Salah, lupa cara substitusi, hanya menghitung acak.	Salah, tidak menggunakan metode substitusi, hanya menghitung acak.
Menyusun bukti & memberikan alasan	Lengkap, sistematis, dan dapat menjelaskan.	Sederhana, hanya mengikuti prosedur tanpa pemahaman.	Tidak sistematis, tidak bisa menjelaskan prosesnya.

Menarik kesimpulan	Logis, didasarkan pada perhitungan yang akurat.	Tidak bisa, karena lupa cara menghitung.	Tidak bisa, karena perhitungannya tidak selesai.
Memeriksa kesahihan argumen	Sistematis, memverifikasi dugaan dengan perhitungan.	Tidak memeriksa, karena lupa cara substitusi.	Tidak memeriksa, karena lupa cara substitusi.

Pembahasan

Temuan penelitian ini menunjukkan bahwa kemandirian belajar memiliki pengaruh signifikan terhadap kemampuan penalaran matematis siswa SMP. Subjek dengan kemandirian belajar tinggi (SKBT) menunjukkan kemampuan penalaran matematis yang unggul di semua indikator: ia mampu menyajikan informasi secara sistematis, mengajukan dugaan yang logis, melakukan manipulasi matematika secara akurat, menyusun bukti yang kuat, menarik kesimpulan yang valid, memeriksa kebenaran argumen, dan menentukan pola secara sistematis. Hal ini selaras dengan teori bahwa siswa mandiri cenderung lebih aktif dalam memonitor proses belajarnya, sehingga mampu mengorganisasi informasi, mengevaluasi solusi, dan memperbaiki kesalahan — yang merupakan inti dari penalaran matematis (Zimmerman & Schunk, 1989; Paokuma et al., 2023).

Subjek dengan kemandirian belajar sedang (SKBS) menunjukkan kemampuan yang cukup dalam menyajikan informasi dan menyusun bukti, tetapi lemah dalam mengajukan dugaan, melakukan manipulasi matematika, menarik kesimpulan, memeriksa kebenaran, dan menentukan pola. Ia sering kali lupa prosedur (misalnya metode substitusi) dan tidak mampu memverifikasi jawabannya, yang menunjukkan bahwa ia masih sangat bergantung pada ingatan dan belum memiliki strategi belajar yang efektif.

Subjek dengan kemandirian belajar rendah (SKBR) hanya mampu mengajukan dugaan yang benar, tetapi gagal dalam semua indikator lainnya. Ia tidak mampu menyajikan informasi secara matematis, melakukan manipulasi matematika, menyusun bukti, menarik kesimpulan, memeriksa kebenaran, atau menentukan pola. Ini mencerminkan ketidakmandirian yang parah: siswa pasif, bergantung pada ingatan instan, dan tidak memiliki strategi untuk menyelesaikan masalah secara sistematis.

5. KESIMPULAN DAN SARAN

Penelitian ini menunjukkan bahwa kemandirian belajar bukan hanya tentang motivasi, tetapi juga tentang kemampuan mengatur proses kognitif dan afektif dalam menyelesaikan tugas akademik. Siswa yang mandiri cenderung lebih percaya diri, disiplin, dan mampu mengevaluasi proses belajarnya yang semuanya berkontribusi langsung pada pengembangan penalaran matematis yang tinggi.

Oleh karena itu, guru perlu: (1). Mendorong kemandirian belajar melalui tugas yang membutuhkan perencanaan, monitoring, dan evaluasi mandiri. (2). Memberikan scaffolding bagi siswa dengan kemandirian rendah, misalnya dengan panduan langkah-langkah penyelesaian dan refleksi harian. (3). Mengintegrasikan model pembelajaran seperti CORE atau Flipped Classroom yang mendorong eksplorasi mandiri dan refleksi.

DAFTAR REFERENSI

- Afid, A. A., Nuvitalia, D., & Sanjaya, D. (2024). Hubungan kemandirian belajar dengan hasil belajar siswa kelas IV sekolah dasar. *Ainara Journal (Jurnal Penelitian dan PKM Bidang Ilmu Pendidikan)*, 5(2), 121–127. https://doi.org/10.54371/ainj.v5i2.445
- Ansori, Y., Herdiman, I., Fajriah, L., Nugraha, Y., Akbar, P., & Bernard, M. (2019). Pengaruh kemandirian belajar siswa SMP terhadap kemampuan penalaran matematis. *Journal on Education*, *1*(2), 288–296. https://doi.org/10.31331/medivesveteran.v3i1.646
- Asmawati, A., Risnawati, R., & Muhandaz, R. (2019). Pengaruh penerapan strategi pembelajaran metakognitif terhadap kemampuan koneksi matematis berdasarkan kemandirian belajar siswa SMP/MTs. *JURING (Journal for Research in Mathematics Learning)*, 2(3), 273. https://doi.org/10.24014/juring.v2i3.7813
- Aulia, W. D., & Abadi, A. P. (2022). Kategorisasi kemampuan penalaran matematis siswa SMP dalam menyelesaikan soal sistem persamaan dua linear. *Seminar Nasional Matematika dan Pendidikan Matematika*, 803–809.
- Ayu, M., & Utama, E. G. (2023). Pengaruh model *Quantum Teaching and Learning* terhadap kemampuan penalaran matematis siswa kelas V pada materi volume bangun ruang di SDN 26 Singkawang. *Pendas: Jurnal Ilmiah Pendidikan Dasar*, 8(3), 610–627.
- Hesti Anjani, W., D. H., & R. S. (2022). Analisis kemampuan penalaran matematis pada materi barisan dan deret siswa kelas XI SMK Negeri 1 Toma tahun pembelajaran 2020/2021. *Afore*, *I*(12), 2439–2450. https://doi.org/10.57094/afore.v1i1.435
- Hidayati, K., & Listyani, E. (2010). Improving instruments of students' self-regulated learning. Jurnal Pendidikan Matematika Universitas Negeri Yogyakarta, 1–18.
- Izzati Irawan, A., Darajaatul Aliyah, N., & Darmawan, D. (2024). Pengaruh lingkungan keluarga, kemandirian belajar, dan media belajar terhadap motivasi belajar siswa di MI Babussalam Krian Sidoarjo. *Journal on Education*, *6*(3), 16220–16233.
- Kadarisma, G., Rosyana, T., & Nurjaman, A. (2019). Pengaruh minat belajar terhadap kemampuan penalaran matematik siswa SMP. *Jurnal Absis*, 2(1), 121–128. https://doi.org/10.30606/absis.v2i1.206

- Kondo, S. A. S., Side, S., & Minggi, I. (2018). Analisis kemampuan penalaran matematis dalam pemecahan masalah aljabar ditinjau dari perbedaan gender pada SMP Negeri 8 Makassar. *Eprints Universitas Negeri Makassar*, *53*(9), 1689–1699.
- Konita, M., Asikin, M., & Noor Asih, T. S. (2019). Kemampuan penalaran matematis dalam model pembelajaran *Connecting, Organizing, Reflecting, Extending. PRISMA, Prosiding Seminar Nasional Matematika*, 2, 611–615.
- Kusumawardani, D. R., Wardono, & Kartono. (2018). Pentingnya penalaran matematika dalam meningkatkan kemampuan literasi matematika. *PRISMA*, *Prosiding Seminar Nasional Matematika*, *I*(1), 588–595.
- Lestari, A. S., Aripin, U., & Hendriana, H. (2018). Identifikasi kesalahan siswa SMP dalam menyelesaikan masalah matematika. *JPMI (Jurnal Pembelajaran Matematika Inovatif)*, *I*(4), 493–504. https://doi.org/10.22460/jpmi.v1i4.p493-504
- Marfu'ah, S., Zaenuri, Masrukan, & Walid. (2022). Model pembelajaran matematika untuk meningkatkan kemampuan penalaran matematis siswa. *Prosiding Seminar Nasional Matematika*, 5, 50–54.
- Maswekan, B., Setiana, D. S., Irfan, M., Studi, P., Matematika, P., Sarjanawiyata, U., & Yogyakarta, T. (2022). Analisis kemandirian belajar peserta didik pada mata pelajaran matematika selama pembelajaran jarak jauh di SMP. *Jurnal Program Studi Pendidikan Matematika*, 11, 57–65.
- Mulyana, A. (2015). Meningkatkan kemampuan penalaran matematik dan kemandirian belajar siswa SMP melalui pembelajaran berbasis masalah. *Jurnal Ilmiah STKIP Siliwangi Bandung*, 9(1), 40–51.
- Mulyani, J. D., Edy, S., & Khikmiyah, F. (2020). Pengaruh kemandirian belajar terhadap kemampuan komunikasi matematis dan kemampuan penyelesaian masalah matematika peserta didik SMP. *Journal GEEJ*, 7(2).
- Mursalini, W. I., Yora, M., & Nelvi, Y. (2024). Pelatihan tes kemampuan penalaran umum untuk siswa kelas XII SMAN 2 Gunung Talang. *Prosiding Konferensi Ilmiah Dasar*, 3, 72–77.
- Muslimin, M., & Sunardi, S. (2019). Analisis kemampuan penalaran matematika siswa SMA pada materi geometri ruang. *Kreano: Jurnal Matematika Kreatif-Inovatif*, 10(2), 171–178. https://doi.org/10.15294/kreano.v10i2.18323
- NCTM. (2000). Principles and standards for school mathematics.
- Paokuma, Y. A., Samo, D. D., & Udil, P. A. (2023). Analisis kemampuan penalaran matematis peserta didik kelas VIII SMP Negeri 20 Kota Kupang pada materi statistika ditinjau dari kemandirian belajar. *Haumeni Journal of Education*, 3(2), 1–9. https://doi.org/10.35508/haumeni.v3i2.11866
- Piaget, J. (2000). *Jean Piaget's theory of cognitive development. Simply Psychology*, October, 8–13.
- Pratama, A. R., Sripatmi, Junaidi, & Sridana, N. (2024). Pengaruh penalaran matematis dan kemandirian belajar terhadap hasil belajar materi statistika siswa kelas VIII MTs Negeri 2 Lombok Barat. *Pendas: Jurnal Ilmiah Pendidikan Dasar*, 9(3), 732–742.
- Purwijaya, M. F., Darmono, P. B., & Maryam, I. (2023). Pengaruh model pembelajaran *Flipped Classroom* terhadap penalaran matematis siswa kelas VII SMP Negeri 8

- Purworejo. *GAUSS: Jurnal Pendidikan Matematika*, 6(1), 55–66. https://doi.org/10.30656/gauss.v6i1.5494
- Rachman, A., (Cand)E., Samanlangi, A. I., & Purnomo, H. (2016). *Metode penelitian kualitatif dan kuantitatif* (Issue Maret). Yogyakarta: CV. Pustaka Ilmu.
- Ratau, A. (2016). Pengaruh pendekatan pembelajaran terhadap kemampuan penalaran dan komunikasi matematika siswa SMP Negeri Kecamatan Leihitu Kabupaten Maluku Tengah. *Jurnal Matematika dan Pembelajaran*, 2(1), 42–59.
- Rezeki, W. S., Hadi, F. R., & Marlina, D. (2022). Kemampuan penalaran matematis siswa kelas IV pada masalah *open ended. Prosiding Konferensi Ilmiah Dasar*, *3*, 810–811.
- Saefuddin, A., Rukajat, A., & Herdiana, Y. (2022). Hubungan kemandirian belajar dengan hasil belajar siswa sekolah dasar pada mata pelajaran pendidikan agama Islam di masa pandemi Covid-19. *Jurnal Pendidikan*, *10*(1), 7–17. https://doi.org/10.36232/pendidikan.v10i1.1266
- Sari, A. (2021). Fenomena ghasab santriwati di Pondok Pesantren Riyadlatul 'Ulum Kecamatan Batanghari Kabupaten Lampung Timur (Tinjauan Patologi Sosial).
- Sari, Y. M. (2023). Pengaruh model pembelajaran inkuiri terbimbing terhadap kemampuan penalaran matematis siswa (Studi pada siswa kelas VII SMP Negeri 1 Natar semester genap tahun pelajaran 2022/2023).
- Setiawan, A. (2016). Hubungan kausal penalaran matematis terhadap prestasi belajar matematika pada materi bangun ruang sisi datar ditinjau dari motivasi belajar matematika siswa. *Al-Jabar: Jurnal Pendidikan Matematika*, 7(1), 91–100. https://doi.org/10.24042/ajpm.v7i1.133
- Sudijono, A. (2011). *Pengantar evaluasi pendidikan*. Jakarta: Rajawali Pers.
- Sugiyono. (2014). *Metode penelitian kualitatif dan kuantitatif* (Issue Maret). Yogyakarta: CV. Pustaka Ilmu.
- Sumarmo, U. (2004). *Kemandirian belajar: Apa, mengapa, dan bagaimana dikembangkan pada peserta didik.* Academia.edu, 1–9.
- Sumartini, T. S. (2015). Peningkatan kemampuan penalaran matematis siswa melalui pembelajaran berbasis masalah. *Mosharafa: Jurnal Pendidikan Matematika*, 4(1), 336–338. https://doi.org/10.31980/mosharafa.v4i1.323
- Sunaisah, S., Rosyadi, I. U., Maulida, F., & Ermawati, D. (2024). Analisis kemampuan penalaran matematis siswa dalam menyelesaikan soal cerita pada materi pecahan siswa kelas III SD. *Khatulistiwa: Jurnal Pendidikan dan Sosial Humaniora*, *4*(3), 187–201. https://doi.org/10.55606/khatulistiwa.v4i3.3961
- Tampubolon, J., Atiqah, N., & Panjaitan, U. I. (2019). Pentingnya konsep dasar matematika pada kehidupan sehari-hari dalam masyarakat. *Program Studi Matematika Universitas Negeri Medan*, 2(3), 1–10.
- Tasaik, H. L., & Tuasikal, P. (2018). Peran guru dalam meningkatkan kemandirian belajar peserta didik kelas V SD Inpres Samberpasi. *Metodik Didaktik*, *14*(1), 45–55. https://doi.org/10.17509/md.v14i1.11384
- Wardhani, S. (2008). *Analisis SI dan SKL mata pelajaran matematika SMP/MTs untuk optimalisasi tujuan mata pelajaran matematika*. Yogyakarta: Pusat Pengembangan dan Pemberdayaan Pendidik dan Tenaga Kependidikan Matematika.

- Wulandari, T., & Machromah, I. U. (2024). Kemampuan penalaran matematis siswa dalam menyelesaikan soal HOTS pada materi pola bilangan. *Jurnal Cendekia: Jurnal Pendidikan Matematika*, 8(1), 689–700. https://doi.org/10.31004/cendekia.v8i1.2014
- Zannati, G. N., Fitrianna, A. Y., & Rohaeti, E. E. (2018). Pengaruh kemandirian belajar terhadap kemampuan penalaran matematis siswa SMP pada materi perbandingan. *JPMI* (*Jurnal Pembelajaran Matematika Inovatif*), *I*(2), 107–112. https://doi.org/10.22460/jpmi.v1i2.p107-112
- Zimmerman, B. J., & Schunk, D. H. (1989). *Self-regulated learning and academic achievement: Theory, research, and practice*. New York: Springer-Verlag.