BAB III

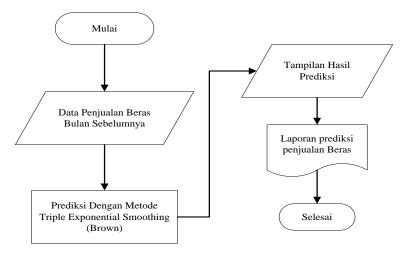
ANALISIS DAN PERANCANGAN SISTEM

3.1. Analisis Sistem

Berdasarkan hasil wawancara dengan pemilik UD. SUMBER TANI menjelaskan bahwa setiap akhir bulan selalu melakukan pencatatan pada jumlah beras yang telah terjual, yang bertujuan untuk mengetahui gambaran penjualan beras di bulan berikutnya. Tetapi hal ini selalu berlawanan dari prediksi awal dimana disaat persediaan beras banyak maka penjualan tidak begitu ramai dan sebaliknya sehingga menyulitkan pemilik untuk menjualnya. Akibat dari hal ini adalah menumpuknya stok beras di gudang yang berakibat buruk karena dapat menimbulkan hama atau kutu pada beras tersebut, Namun, apabila terjadi kekurangan persediaan dalam penjualan akan menghambat proses penjualan beras yang berakibat pelanggan berkurang karena stok beras tidak tersedia.

Adanya sistem prediksi akan membantu pemilik usaha untuk mengambil keputusan dalam menentukan penjualan beras pada bulan yang akan datang sehinggah dapat mengetahui seberapa banyak beras yang dibutuhkan untuk memenuhi kebutuhan konsumen.

3.2. Hasil Analisis


Hasil analisis penjualan beras di UD. SUMBER TANI dalam menyelesaikan permasalahan penentuan ketetapan prediksi penjualan beras maka di butuhkan peran sebuah sistem prediksi penjualan yang dapat membantu dalam pengadaan beras yang akan dijual karena dapat mengetahui berapa jumlah penjualan beras pada bulan yang akan datang.

Aplikasi peramalan atau *forecasting* ini meramalkan penjualan beras di bulan yang akan datang dengan melihat penjualan di bulan sebelunya di UD. SUMBER TANI, sistem ini bisa di jadikan acuan untuk target penjualan beras di bulan berikutnya untuk memperkecil kerugian yang di alami.

Sistem ini memprediksi penjualan beras di UD. SUMBER TANI berdasarkan atribut penjualan beras di bulan sebelumnya dari bulan januari 2014 sampai agustus 2017, data yang digunakan di peroleh langsung dari UD. SUMBER TANI. Sistem yang akan dibangun di tujukan untuk pemilik UD. SUMBER TANI yang akan menentuakn keputusan berdasarkan prediksi yang di berikan oleh sistem. Berdasarkan hal tersebut, sistem ini terdiri dari 2 entitas, yaitu:

- Administrasi: merupakan entitas yang bertanggung jawab penuh terhadap berjalannya sistem sesuai dengan tujuan pengembangan sistem itu sendiri dan juga bertanggung jawab untuk memasukkan data per bulan serta memperoleh hasil peramalan.
- 2. Pemilik usaha : bertanggung jawab mengambil keputusan berdasarkan peramalan yang dilakukan sistem. Pemilik juga dapat melihat hasil laporan peramalan sistem.

Metode prediksi yang akan penulis gunakan dalam penelitian ini adalah metode *Triple exponential smoothing (Brown)*. Alasan menggunakan metode *Triple exponential smoothing (Brown)* membantu manajemen dalam mengola data penjualan beras. Metode ini sebagaimana halnya dengan pemulusan eksponensial liniear yang dapat digunakan untuk meramalkan data dengan suatu pola trend dasar (kenaikan dan penurunan jangka panjang dalam data), bentuk pemulusan yang lebih tinggi ini dapat digunakan bila dasar pola datanya adalah kuadratik, kubik, atau orde yang lebih tinggi. Untuk berangkat dari pemulusan kuadratik, pendekatan dasarnya adalah memasukkan tingkat pemulusan tambahan (pemulusan *triple*) dan memberlakukan persamaan peramalan kuadratik. Diagram alir sistem predisi jumlah kebutuhan beras di UD. SUMBER TANI di tunjukkan pada gambar berikut:

Gambar 3.1 Diagram Alir Analisis Sistem

Gambar 3.1, menjelaskan proses prediksi jumlah kebutuhan beras dimulai dengan transaksi input data penjualan yang dilakukan oleh karyawan. Kemudian mengambil data penjualan beras bulan sebelumnya yang digunkan untuk prediksi penjualan beras yang akan terjual bulan berikutnya dengan metode *Triple exponential smoothing (Brown)* yang kemudian mengetahui hasil prediksi penjualan beras pada bulan berikutnya.

Berikut merupakan langkah-langkah perhitungan dengan metode *Triple Exponential Smoothing (Brown)*.

- 1. Masukkan data aktual penjualan beras.
- Menentukan jumlah m (jumlah periode/bulan) Mencari nilai S't, S"t, S"t, at, bt, ct untuk dasar mencari trend. Selanjutnya mencari hasil peramalan yang diinginkan yaitu dengan rumusan

$$F_{t+m} = a_t + b_t m + \frac{1}{2} c_t m^2$$
(Rumus 3.1)

Keterangan: S'_t = Nilai pemulusan tunggal

 S''_t = Nilai pemulusan ganda

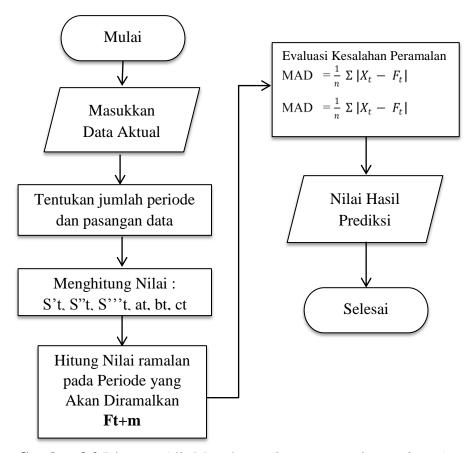
 $S_t^{\prime\prime\prime}$ = Nilai pemulusan tripel

Xt = Data aktual pada waktu ke-t

 a_t = Pemulusan total

 b_t = Pemulusan trend

 C_t = Pemulusan Kuadratik


 F_{t+m} = nilai ramalan

m = periode masa mendatang

 α = konstanta dengan nilai antara 0 dan 1

- 4. Hitung Kesalahan Peramalan menggunakan *Mean Absolut Deviation (MAD)* dan *Mean Absolut Percentage error (MAPE)*.
- 5. Nilai hasil peramalan.

Berikut merupakan diagram alir metode *Triple exponential smoothing* (*Brown*):

Gambar 3.2 Diagram Alir Metode *Triple exponential smoothing (Brown)*

3.3. Representasi Model

Metode perhitungan yang digunakan pada prediksi penjualan beras di UD. SUMBER TANI adalah menggunakan metode *Triple exponential smoothing* (*Brown*). Sistem yang akan dibangun dalam penelitian ini nantinya akan memprediksi penjualan beras di UD. SUMBER TANI berdasarkan data penjualan beras pada bulan sebelumnya. Sistem prediksi ini menggunakan 1 atribut yaitu data penjualan pada bulan sebelumnya yang dimulai pada bulan Januari 2014 sampai Agustus 2017. Data penjualan ini diperoleh dari UD. SUMBER TANI LAMONGAN, lihat pada **Tabel 3.1**

Tabel 3.1 Data Penjualan Beras

No	Bulan	Tahun	Jumlah Penjualan Beras (Kwintal)
1	Januari	2014	185
2	Februari	2014	165
3	Maret	2014	157
4	April	2014	170
5	Mei	2014	177
6	Juni	2014	187
7	Juli	2014	195
8	Agustus	2014	173
9	September	2014	187
10	Oktober	2014	192
11	November	2014	200
12	Desember	2014	197
13	Januari	2015	190
14	Februari	2015	183
15	Maret	2015	187
16	April	2015	200
17	Mei	2015	202
18	Juni	2015	195
19	Juli	2015	175
20	Agustus	2015	175
21	September	2015	202
22	Oktober	2015	193
23	November	2015	193

24	Desember	2015	200
25	Januari	2016	195
26	Februari	2016	187
27	Maret	2016	200
28	April	2016	192
29	Mei	2016	197
30	Juni	2016	180
31	Juli	2016	187
32	Agustus	2016	197
33	September	2016	200
34	Oktober	2016	192
35	November	2016	197
36	Desember	2016	205
37	Januari	2017	183
38	Februari	2017	190
39	Maret	2017	185
40	April	2017	200
41	Mei	2017	205
42	Juni	2017	195
43	Juli	2017	197
44	Agustus	2017	200

Dari data pada **Tabel 3.1** akan dihitung peramalan (*forecast*) untuk bulan September 2017 dengan menggunakan metode *Triple Exponential Smoothing* (*Brown*) sebagai berikut :

3.3.1 Menggunakan data 3 bulan

Berikut merupakan contoh perhitungan dengan menggunakan metode *Triple Exponential Smoothing (Brown)* yaitu peramalan (*forecast*) Penjualan Beras Lamongan berdasarkan data pada **Tabel 3.1.** pada perhitungan ini akan meramalkan penjualan beras pada periode berikutnya yaitu April 2014 dengan menggunakan data 3 bulan sebelumnya yaitu Januari, Februari, dan Maret 2014.

Agar dapat memulai sistem peramalan metode Brown kita memerlukan S't(1), $S''_t(1)$ dan $S'''_t(1)$ karena $S'_t = \alpha \chi_t + (1-\alpha) S'_{t-1}$, $S''_t = \alpha S'_t + (1-\alpha) S''_{t-1}$ dan $S'''_t = \alpha S''_t + (1-\alpha) S'''_{t-1}$, Karena pada proses pertama, jika nilai $S'_t(1)$, $S''_t(1)$ dan $S'''_t(1)$ tidak diketahui, maka kita dapat menggunakan

nilai observasi dengan data aktual yang pertama (X_1) . Berdasarkan data di bawah ini akan di hitung peramalan pada periode April 2014, dengan alpha: 0,1.

Tabel 3.2 Tabel Penjualan Bersa Selama 3 Bulan

No	Bulan	Tahun	Jumlah Penjualan Beras (Kwintal)
1	Januari	2014	185
2	Februari	2014	165
3	Maret	2014	157

1. Proses pertama nilai $S'_t(1)$, $S''_t(1)$ dan $S'''_t(1)$ tidak diketahui, maka kita dapat menggunakan nilai observasi dengan data aktual yang pertama (X_1) . Berikut merupakan perhitungan peramalan pada periode Februari 2014 dengan jumlah penjualan yaitu 165 dengan alpha 0,1:

Perhitungan Pemulusan Tunggal

$$S'_{t} = \alpha X_{t} + (1 - \alpha) S'_{t-1}$$

$$= 0.1*165 + (1 - 0.1)*185$$

$$= 16.5 + (0.9*185)$$

$$= 16.5 + 166.5$$

$$= 183$$

Perhitungan Pemulusan Ganda

$$S"_{t} = \alpha S'_{t} + (1 - \alpha) S"_{t-1}$$

$$= 0.1*183 + (1 - 0.1)*185$$

$$= 18.3 + (0.9*185)$$

$$= 18.3 + 166.5$$

$$= 184.8$$

Perhitungan Pemulusan Triple

S'''_t=
$$\alpha S''_t + (I - \alpha) S'''_{t-1}$$

= 0,1*184,8 + (1 - 0,1)*185

$$= 18,48 + (0,9*185)$$
$$= 18,48 + 166,5$$
$$= 184,98$$

Perhitungan pemulusan total

$$a_t = 3S'_t - 3S''_t + S'''_{t-1}$$

$$= (3*183) - (3*184,8) + 184,98$$

$$= 549 - 554,4 + 184,98$$

$$= 179.58$$

Perhitungan pemulusan trend (Slope)

$$b_{t} = \frac{\alpha}{2(1-\alpha)^{2}} \left[(6-5\alpha) S'_{t} - (10-8\alpha) S''_{t} + (4-3\alpha) S'''_{t} \right]$$

$$= \frac{0.1}{2(1-0.1)^{2}} \left[(6-5*0.1) S'_{t} - (10-8*0.1) S''_{t} + (4-3*0.1) S'''_{t} \right]$$

$$= (0.062*((5.5*183) - (9.2*184.8) + (3.7*184.98)))$$

$$= (0.062*((1006.5) - (1700.16) + (684.426))$$

$$= -0.570$$

Perhitungan Pemulusan Kuadratik (slope tambahan)

$$C_{t} = \frac{\alpha^{2}}{(1-\alpha)^{2}} (S'_{t} - 2S''_{t} + S'''_{t})$$

$$= \frac{0.1^{2}}{(1-0.1)^{2}} (183 - 2 * (184.8) + 184.98)$$

$$= 0.012 * (183 - 369.6 + 184.98)$$

$$= -0.020$$

Perhitungan peramalan (*forecasting*) pada proses pertama tidak dihitung karena untuk menghitung peramalan (*forecasting*) membutuhkan hasil perhitungan a_t (1), b_t (1) dan C_t (1) pada perhitungan periode sebelumnya yaitu periode Januari 2014. Sedangkan pada proses pertama pada periode Januari 2014 tidak dilakukan perhitungan sehingga perhitungan a_t (1), b_t (1) dan C_t (1) pada periode Januari 2014 masih kosong.

2. Proses kedua nilai S'_t(2), S''_t(2) dan S'''_t(2) pada perhitungan periode sebelumnya yaitu Februari 2014 diketahui, sehingga kita dapat menggunakan hasil perhitungan dari nilai S'_t(2), S''_t(2) dan S'''_t(2) untuk menghitung nilai S'_t(3), S''_t(3) dan S'''_t(3) pada periode Maret 2014. Berikut merupakan perhitungan peramalan pada periode Maret 2014 dengan jumlah penjualan yaitu 157:

Perhitungan Pemulusan Tunggal

$$S'_{t} = \alpha X_{t} + (1 - \alpha) S'_{t-1}$$

$$= 0.1*157 + (1 - 0.1)*183$$

$$= 15.7 + (0.9*183)$$

$$= 15.7 + 164.7$$

$$= 180.4$$

Perhitungan Pemulusan Ganda

$$S''_{t} = \alpha S'_{t} + (1 - \alpha) S''_{t-1}$$

$$= 0.1*180.4 + (1 - 0.1)*184.8$$

$$= 18.04 + (0.9*184.8)$$

$$= 18.04 + 166.32$$

$$= 184.36$$

Perhitungan Pemulusan Triple

$$S'''_{t} = \alpha S''_{t} + (I - \alpha) S'''_{t-1}$$

$$= 0.1*184,36 + (1 - 0.1)*184,98$$

$$= 18,436 + (0.9*184,98)$$

$$= 18,436 + 166,482$$

$$= 184,918$$

Perhitungan pemulusan total

$$a_t = 3S'_t - 3S''_t + S'''_{t-1}$$

= (3*180,4) - (3*184,36) + 184,918

$$= 541,2 - 553,08 + 184,918$$

= 173,038

Perhitungan pemulusan trend (Slope)

$$b_{t} = \frac{\alpha}{2(1-\alpha)^{2}} \left[(6-5\alpha) S'_{t} - (10-8\alpha) S''_{t} + (4-3\alpha) S'''_{t} \right]$$

$$= \frac{0.1}{2(1-0.1)^{2}} \left[(6-5*0.1) S'_{t} - (10-8*0.1) S''_{t} + (4-3*0.1) S'''_{t} \right]$$

$$= (0.062*((5.5*180.4) - (9.2*184.36) + (3.7*184.918)))$$

$$= (0.062*((992.2) - (1.696.112) + (684.196))$$

$$= -1.217$$

Perhitungan Pemulusan Kuadratik (slope tambahan)

$$C_{t} = \frac{\alpha^{2}}{(1-\alpha)^{2}} (S'_{t} - 2S''_{t} + S'''_{t})$$

$$= \frac{0.1^{2}}{(1-0.1)^{2}} (180.4 - 2 * (184.36) + 184.918)$$

$$= 0.012 * (180.4 - 368.72 + 184.918)$$

$$= -0.042$$

Perhitungan peramalan (*forecasting*) periode Maret 2014 menggunakan hasil perhitungan a_t (2), b_t (2) dan C_t (2) pada perhitungan periode sebelumnya yaitu periode Februari 2014. Nilai m=1 karena pada peramalan ini menghitung pada periode waktu 1 bulan berikutnya. Berikut merupakan perhitungan *forecast* pada periode Februari 2014 :

$$F_{t+m} = a_t + b_t m + \frac{1}{2} c_t m^2$$

$$= 179,58 + ((-0,570)*1) + ((0,5)*(-0,020)*1)^2))$$

$$= 179,58 + (-0,57) + 0,0001$$

$$= 179,010$$

Proses ketiga yaitu melakukan proses permalan (forecast) pada period ke-4
yaitu periode April 2014 berdasarkan data periode 3 bulan sebelumnya yang
sudah dilakukan proses perhitungan yaitu periode Januari, Februari, Maret

2014. Untuk menghitung permalan (forecast) pada periode April 2014 dibutuhkan hasil perhitungan a_t (3), b_t (3) dan C_t (3) pada perhitungan periode sebelumnya yaitu periode Maret 2014. Berikut merupakan hasil perhitungan forecast pada periode Maret 2014:

$$F_{t+m} = a_t + b_t m + \frac{1}{2} c_t m^2$$

$$= 173,038 + ((-1,217)*1) + ((0,5)*(-0,042)*1)^2))$$

$$= 173,038 + (-1,217) + 0,000441$$

$$= 171,822$$

Tabel 3.3 Tabel Hasil Perhitungan Peramalan Menggunakan Acuan Data 3 Bulan Sebelumnya

Periode	Tahun	Data Penjual an Xt	s't	s"t	s'''t	at	bt	ct	Ft+m
Januari	2014	185	185,000	185,000	185,000				
Februari	2014	165	183,000	184,800	184,980	179,580	-0,570	-0,020	
Maret	2014	157	180,400	184,360	184,918	173,038	-1,217	-0,042	179,010
									171,822

Berdasarkan hasil perhitungan peramalan (*forecast*) pada **Tabel 3.3** di periode April 2014 menggunakan data 3 bulan sebelumnya adalah 171,822.

4. Proses keempat yaitu perhitungan *error*

Terdapat beberapa metode untuk menghitung kesalahan atau mengevaluasi hasil peramalan. Salah satu metode untuk mengevaluasi metode peramalan menggunakan jumlah dari kesalahan-kesalahan yang absolut dan menghitung kesalahan-kesalahan peramalan dalam bentuk presentase dari pada jumlah. *Mean Absolute Deviation* (MAD) mengukur ketepatan ramalan dengan merata-rata kesalahan dugaan (nilai absolut masing-masing kesalahan). *Mean Absolute Percentage Error* (MAPE) digunakan ketika ukuran atau besar variabel ramalan itu penting dalam mengevaluasi ketepatan ramalan.

Data aktual adalah data asli Penjualan Beras (X_t), hasil ramalan (\hat{F}_t) adalah hasil dari persamaan *Triple Exponential Smoothing (Brown)*, Selisih (*Error*) diperoleh dari data aktual penjualan beras dikurangi hasil ramalan penjualan beras, $|Xt-\hat{F}_t|$ diperoleh dari selisih (*Error*) yang dimutlakkan untuk menghilangkan nilai (-) dalam angka. Sedangkan konsep MAPE adalah $\frac{1}{n}\sum_{t=1}^n\frac{|X_t-\hat{F}_t|}{X_t}*100$, dimana (data asli penjualan beras (X_t) dikurangi ramalan penjualan beras (\hat{F}_t) dibagi data asli penjualan beras (X_t) dan kemudian di kali dengan 100 untuk mencari nilai persennya (%). Berikut **Tabel 3.4** merupakan perhitungan *error* dari hasil semua perhitungan peramalan (*forecast*) periode April 2014 sampai Agustus 2017 menggunakan data 3 bulan sebelumnya selama 4 tahun dengan alpha 0,1.

Tabel 3.4 Tabel Hasil Keseluruhan Perhitungan Permalan (*Forecast*)
Menggunakan Acuan Data 3 Bulan Sebelumnya

Periode	Tahun	Data Penjualan (Xt)	Ft + m	error	error	error / Xt
Januari	2014	185				
Februari	2014	165				
Maret	2014	157				
April	2014	170	171,822	-1,822	1,822	0,011
Mei	2014	177	164,580	12,420	12,420	0,070
Juni	2014	187	166,106	20,894	20,894	0,112
Juli	2014	195	176,769	18,231	18,231	0,093
Agustus	2014	173	184,788	-11,788	11,788	0,068
September	2014	192	184,724	7,276	7,276	0,038
Oktober	2014	192	188,829	3,171	3,171	0,017
Nopember	2014	200	183,244	16,756	16,756	0,084
Desember	2014	197	194,396	2,604	2,604	0,013
Januari	2015	190	195,415	-5,415	5,415	0,028
Februari	2015	183	196,286	-13,286	13,286	0,073
Maret	2015	187	191,130	-4,130	4,130	0,022
April	2015	200	187,424	12,576	12,576	0,063
Mei	2015	202	189,050	12,950	12,950	0,064
Juni	2015	195	194,608	0,392	0,392	0,002

Periode	Tahun	Data Penjualan (Xt)	Ft + m	error	error	error / Xt	
Juli	2015	175	198,982	-23,982	23,982	0,137	
Agustus	2015	175	192,236	-17,236	17,236	0,098	
September	2015	202	184,218	17,782	17,782	0,088	
Oktober	2015	193	183,087	9,913	9,913	0,051	
Nopember	2015	193	186,862	6,138	6,138	0,032	
Desember	2015	200	197,148	2,852	2,852	0,014	
Januari	2016	195	195,097	-0,097	0,097	0,000	
Februari	2016	187	195,277	-8,277	8,277	0,044	
Maret	2016	200	194,908	5,092	5,092	0,025	
April	2016	192	194,580	-2,580	2,580	0,013	
Mei	2016	197	191,613	5,387	5,387	0,027	
Juni	2016	180	197,184	-17,184	17,184	0,095	
Juli	2016	187	189,604	-2,604	2,604	0,014	
Agustus	2016	197	189,931	7,069	7,069	0,036	
September	2016	200	186,769	13,231	13,231	0,066	
Oktober	2016	192	193,290	-1,290	1,290	0,007	
Nopember	2016	197	196,221	0,779	0,779	0,004	
Desember	2016	205	197,184	7,816	7,816	0,038	
Januari	2017	183	197,092	-14,092	14,092	0,077	
Februari	2017	190	194,724	-4,724	4,724	0,025	
Maret	2017	185	195,236	-10,236	10,236	0,055	
April	2017	200	185,253	14,747	14,747	0,074	
Mei	2017	205	191,797	13,203	13,203	0,064	
Juni	2017	195	194,585	0,415	0,415	0,002	
Juli	2017	197	199,701	-2,701	2,701	0,014	
Agustus 2017 200 200,208 -0,208 0,208							
TOTAL error							
TOTAL error / Xt							
	MAD						
		MAPE				4,542%	

Berikut merupakan perhitungan error *Mean Absolute Deviation* (MAD) untuk mengukur ketepatan ramalan dengan merata-rata kesalahan dugaan (nilai absolut masing-masing kesalahan) dan *Mean Absolute Percentage Error* (MAPE) dihitung dengan menggunakan kesalahan absolut pada tiap periode dibagi dengan nilai observasi yang nyata untuk periode itu. Kemudian, merata-rata kesalahan

persentase absolut tersebut dan kemudian di kali dengan 100 untuk mencari nilai persennya (%). Berikut hasil perhitungan MAD dan MAPE berdasarkan hasil keseluruhan perhitungan pada **Tabel 3.4.**

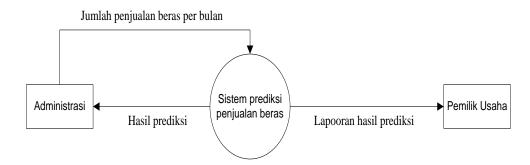
MAD
$$= \frac{1}{n} \sum_{t=1}^{n} |X_t - \hat{F}_t|$$

$$= 353,341/41$$

$$= 8,618$$
MAPE
$$= \frac{1}{n} \sum_{t=1}^{n} \frac{|X_t - \hat{F}_t|}{X_t} * 100$$

$$= (1,862/41)*100$$

$$= 0,045 * 100$$


$$= 4,542 %$$

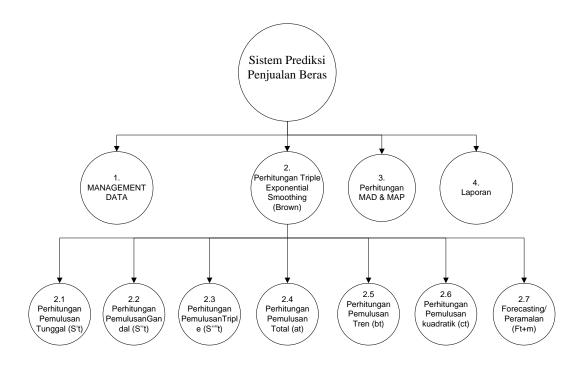
Jadi penjualan beras untuk periode April 2014 – Agustus 2017 dengan menggunakan perhitungan data 3 bulan sebelumnya selama 3 tahun dengan alpha 0,1 menghasilkan nilai MAD 8,618 dan MAPE 4,542 %

3.4. Perancangan Sistem

3.4.1. Diagram Konteks

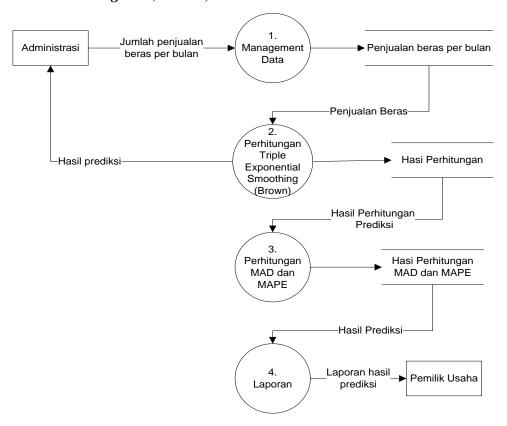
Diagram konteks merupakan diagram yang menunjukkan sebuah proses tunggal dalam sistem yang berhubungan langsung dengan semua entitas eksternal sistem.

Gambar 3.3 Diagram Konteks Sistem Prediksi penjualan Beras.


Diagram Konteks pada **gambar 3.3** merupakan gambaran sistem secara garis besar, dimana terdapat 2 entitas luar yang berhubungan dengan sistem, yaitu:

- Administrasi merupakan pihak yang mengolah jumlah penjualan beras per bulan dan juga memperoleh info mengenai jumlah penjualan beras, serta mendapatkan hasil prediksi.
- 2. Pemilik usaha merupakan pihak yang dapat melihat laporan prediksi penjualan beras.

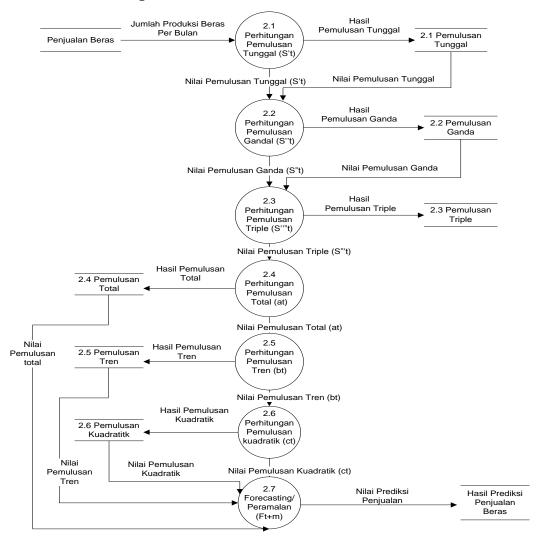
3.4.2. Diagram Berjenjang


Diagram berjenjang sangat diperlukan dalam perancangan semua proses yang ada. diagram berjenjang merupakan penggunaan awal dalam menggambarkan *Data Flow Diagram* (DFD) ke level-level lebih bawah lagi

- 1. Top level : Sistem Prediksi Penjualan Beras
- 2. Level 0 : Merupakan hasil *break down* dari proses keseluruhan dari Sistem Prediksi Penjualan Beras menjadi beberapa sub proses yaitu :
 - 1. Management data
 - 2. Perhitungan *Triple Exponential Smoothing (Brown)*
 - 3. Perhitungan MAD & MAPE
 - 4. Laporan hasil prediksi
- 3. Level 1 : Merupakan sub proses dari beberapa proses pada level 0 Sistem Prediksi Penjualan Beras yang menggambarkan beberapa proses detail yaitu :
 - 2.1 Perhitungan pemulusan tunggal (S't)
 - 2.2 Perhitungan pemulusan ganda (S"t)
 - 2.3 Perhitungan pemulusan Tripel (S'''t)
 - 2.4 Perhitungan pemulusan total (at)
 - 2.5 Perhitungan pemulusan trend (bt)
 - 2.6 Perhitungan pemulusan kuadratik (ct)
 - 2.7 Perhitungan prediksi (Ft+m)

Gambar 3.4 Diagram Berjenjang Sistem Prediksi Penjualan Beras

3.4.3. Data Flow Diagram (Level 0)



Gambar 3.5 DFD Level 0 Sistem Prediksi Penjualan Beras.

Keterangan:

Berdasarkan **Gambar 3.5**, menjelaskan beberapa proses yang terjadi pada sistem prediksi penjualan beras dimana proses tersebut terbagi menjadi 4 proses yaitu: Management Data, Perhitungan *Triple Exponential Smoothing (Brown)*, perhitungan MAD dan MAPE dan Laporan hasil prediksi. Setiap *stake holder* memiliki peranan masing-masing dalam jalannya sistem. Output dari sistem adalah prediksi penjualan beras pada periode berikutnya yang nantinya akan dibuatkan laporan hasil prediksi dari hasil prediksi yang nantinya bisa dilihat oleh pemilik usaha.

3.4.4. Data Flow Diagram Level 1

Gambar 3.6 DFD Level 1 Sistem Prediksi Penjualan Beras

DFD level 1 proses 1 yang ditunjukan pada **Gambar 3.6** menjelaskan beberapa proses yang terjadi pada sistem prediksi penjualan beras yang merupakan hasil break down dari DFD level 0 untuk mendapatkan perilaku sistem yang lebih detail. Beberapa proses yang ada pada DFD level 1 proses 1 antara lain:

- a. Proses 2.1 adalah langkah pertama untuk mencari nilai pemulusan tunggal, yang mana hasil dari pemulusan tunggal akan di proses lagi di tahap pemulusan ganda.
- b. Proses 2.2 adalah langkah kedua untuk mencari nilai pemulusan ganda, yang mana hasil dari pemulusan ganda dan tunggal pada perhitungan sebelumnya akan di proses di tahap pemulusan tripel
- c. Proses 2.3 adalah langkah ketiga untuk mencari nilai pemulusan tripel, yang mana hasil dari pemulusan tripel, ganda dan tunggal pada perhitungan sebelumnya akan di proses di tahap berikutnya
- d. Proses 2.4 adalah langkah keempat untuk mencari perbedaan antara nilai nilai pemulusan *exponential* yang sebelumnya sudah didapatkan nilainya, yaitu nilai pemulusan tunggal (S't), pemulusan ganda (S''t) dan pemulusan tripel (S'''t).
- e. Proses 2.5 adalah langkah kelima untuk penyesuai tambahan pengukuran slope suatu kurva.
- f. Proses 2.6 adalah langkah keenam untuk menentukan nilai ct (mencari nilai slope tambahan)
- g. Proses 2.7 adalah tahap untuk memprediksi nilai pada periode yang akan diramalkan tingkat penjualan beras.

3.5 Perancangan Basis Data

3.5.1. Struktur Tabel

Struktur tabel merupakan susunan dari tabel yang akan digunakan atau diimplementasikan kedalam database, dimana untuk struktur table memuat detail data *type* table dan *primary key* serta *foreign key* dari table tersebut :

1. Tabel User

Tabel *user* digunakan untuk mencatat data identitas *user* yang terlibat di dalam sistem. Secara umum struktur yang digunakan pada tabel *user* dapat dilihat pada **Tabel 3.5**.

Tabel 3.5 Struktur Tabel *User*

No	Nama Field	Tipe Data	Ukuran	Keterangan
1.	id_user (PK)	Int	10	id pengguna sistem
2.	username	Varchar	50	Username login
3.	Password	Char	30	Password login
4.	Nama	Varchar	50	Nama Pengguna
5.	Level	char	1	Hak akses user

2. Tabel Penjualan

Tabel pejualan berfungsi untuk menyimpan data penjualan per bulan yang nantinya akan digunakan sebagai data untuk prediksi periode yang akan datang. Struktur tabel penjualan dapat dilihat pada **Tabel 3.6.**

Tabel 3.6 Struktur Tabel Penjualan

No	Nama Field	Tipe Data	Ukuran	Keterangan
1.	id_penjualan(PK)	Int	10	id penjualan
2.	Bulan	Int	5	Periode penjualan
3.	Tahun	Year	4	Tahun penjualan
4.	Penjualan	Int	10	Jumlah penjualan beras

3. Tabel Prediksi

Tabel hasil prediksi berfungsi untuk menyimpan hasil dari prediksi dari perhitungan yang telah dilakukan oleh sistem. Struktur tabel prediksi dapat dilihat pada **Tabel 3.7.**

Tabel 3.7 Struktur Tabel Prediksi

No	Nama Field	Tipe Data	Ukuran	Keterangan
1.	Id_prediksi (PK)	Int	10	Id hasil
2.	Id_penjualan	Int	10	Periode penjualan
3.	Orde	Int	5	Tahun penjualan
4.	Hasil_prediksi	Char	10	Jumlah prediksi penjualan beras

4. Tabel Peramalan

Tabel 3.8 tabel peramalan berfungsi untuk menyimpan data prediksi dari perhitungan yang telah dilakukan oleh sistem. Atribut yang ada dalam tabel peramalan adalah id_forecasting, id_pelanggan, periode, tahun, acuan, alpha, mad, mape dan hasil_forecasting.

Tabel 3.8 Tabel Peramalan

No	Nama Field	Tipe Data	Ukuran	Keterangan
1	id_forecasting (PK)	int	11	Id forecasting
2	id_pelanggan	char	16	Id pengguna
3	periode	int	2	Periode forecast
4	tahun	yeare	4	Tahun forecast
5	acuan	int	2	Acuan data
6	alpha	Double		Nilai alpha
7	mad	Double		Nilai MAD
8	mape	Double		Nilai MAPE
10	hasil_forecasting	Double		Hasil Prediksi

3.6 Kebutuhan Pembuatan Sistem

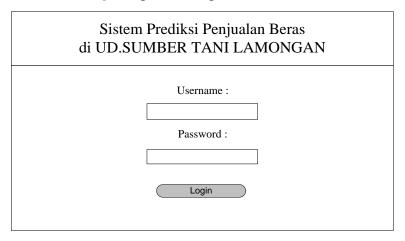
1. Perangkat Keras

Spesifikasi perangkat keras (*hardware*) yang dipakai dalam implementasi antara lain :

- 1. Prosesor Pentium Core i5.
- 2. Hardisk dengan kapasitas 4G.
- 3. Mouse.
- 4. Keyboard.
- 5. Monitor.
- 6. Printer Brother DCP-J105.

2. Perangkat Lunak

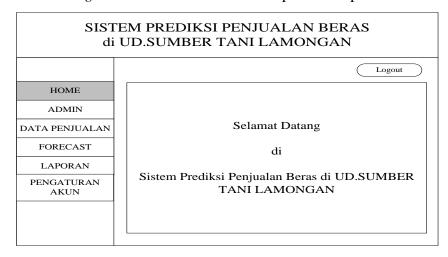
Adapun spesifikasi perangkat lunak (*software*) yang digunakan antara lain:


- 1. Sistem Operasi Microsoft Windows 7 Home Premium 64-bit.
- 2. Google Chrome 51.0.
- 3. Notepad++ sebagai media untuk menuliskan *source code* php.
- 4. SQLyog Community.
- 5. Web server Apache.
- 6. Database server MySql.
- 7. Bahasa pemrograman PHP.

3.7 Desain Antarmuka

Aplikasi prediksi penjualan beras di UD. SUMBER TANI Lamongan ini adalah sistem berbasis web dengan bahasa pemrograman PHP. Antarmuka sistem merupakan bagian dari sistem yang menghubungkan user dengan sistem untuk melakukan *input* data berupa data penjualan beras tiap bulan/periode, proses prediksi, serta pelaporan. Pada sistem prediksi penjualan beras di UD. SUMBER TANI Lamongan ini terdapat beberapa halaman, antara lain:

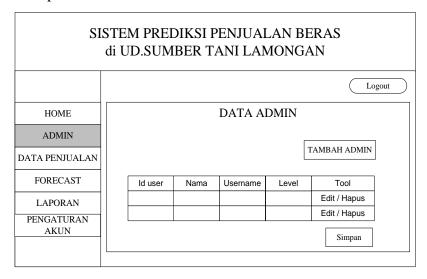
1. Halaman *Login*


Halaman *login* merupakan halaman yang digunakan oleh *user* melakukan Login dalam sistem. Dalam halaman ini user diminta mengisi *username* dan *password* yang sesuai dengan akun yang dimiliki oleh *user* dan *user* dapat melakukan akses terhadap sistem sesuai hak akses yang dimiliki oleh user tersebut. Desain halaman *Login* dapat dilihat pada **Gambar 3.7**.

Gambar 3.7 Desain Antarmuka Halaman Login

2. Halaman Home

Halaman *home* merupakan tampilan awal sistem prediksi setelah Admin berhasil melakukan *login*. Desain halaman *Home* dapat dilihat pada **Gambar 3.8.**



Gambar 3.8 Desain Antarmuka Halaman Home

3. Halaman Admin

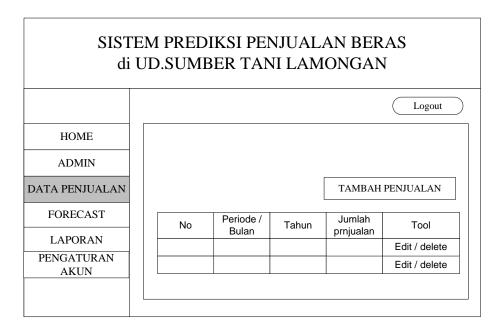
a. Data Admin

Halaman Data admin menampilkan data pengguna Sistem prediksi penjualan beras di UD. SUMBER TANI Lamongan. Hanya pemilik usaha dapat melihat, menambah, merubah dan menghapus data Admin. Desain halaman data Admin dapat dilihat pada **Gambar 3.9**.

Gambar 3.9 Desain Antarmuka Halaman Data Admin

b. Tambah Admin

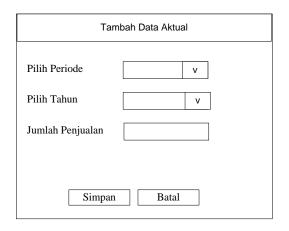
Halaman tambah Admin digunakan untuk menambahkan pengguna baru Sistem prediksi penjualan beras di UD. SUMBER TANI Lamongan. Terdapat 2 level pengguna dalam sistem yang akan dibangun yaitu Admin, dan Pemilik Usaha. Desain halaman tambah Admin dapat dilihat pada **Gambar 3.10**.


Tambah Admin Baru			
Nama			
Username			
Password			
Level	v		
Simpan	Batal		

Gambar 3.10 Desain Antarmuka Halaman Tambah Admin

4. Halaman Data Penjualan

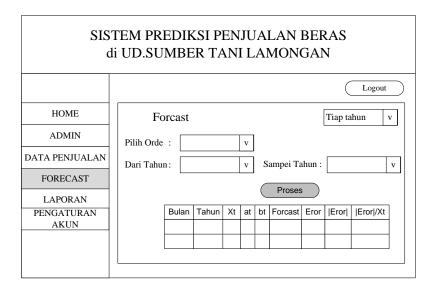
a. Data Penjualan


Halaman data penjualan berfungsi untuk menampilkan data penjualan beras per bulan atau periode yang berupa jumlah total penjualan tiap bulan. Administrasi dapat melakukan aksi mengedit atau menghapus data pada tabel. Desain halaman data penjualan dapat dilihat pada **Gambar 3.11.**

Gambar 3.11 Desain Antarmuka Halaman Data Penjualan

b. Tambah Penjualan

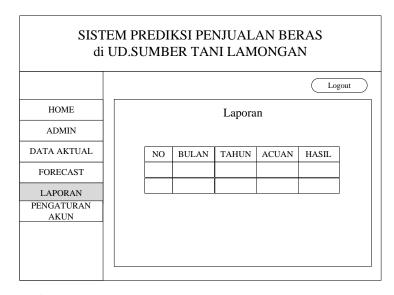
Halaman tambah penjualan hanya dapat diakses oleh administrasi. Antar muka halaman tambah data merupakan halaman yang berfungsi untuk memasukkan data periode atau bulan, tahun dan jumlah penjualan beras. Data yang telah dimasukkan tersebut akan disimpan dalam *database* dan akan digunakan sebagai data prediksi. Desain halaman tambah penjualan dapat dilihat pada **Gambar 3.12.**


Gambar 3.12 Desain Antarmuka Halaman Tambah Penjualan

5. Halaman Forecast

Halaman forecast berfungsi untuk melakukan proses perhitungan prediksi penjualan beras. Desain halaman *forecast* dapat dilihat pada **Gambar 3.13**.dan **3.14**

SISTEM PREDIKSI PENJUALAN BERAS di UD.SUMBER TANI LAMONGAN					
	Logout				
HOME	Forcast				
ADMIN	Dari Tahun v Sampai Tahun v				
DATA PENJUALAN	Acuan Peramalan				
FORECAST LAPORAN	Tahun:				
	Proses				
	No Periode Tahun Jumlah Forecast Error Error Error /Xt				


Gambar 3.13 Desain Antarmuka Halaman Forecast Tiap Tahun.

Gambar 3.14 Desain Antarmuka Halaman Perhitugan MAD dan MAPE Tiap Tahun.

6. Halaman Laporan

Halaman laporan berfungsi untuk menampilkan laporan prediksi penjualan beras pada periode selanjutnya. Halaman ini dapat diakses oleh admin dan pemilik usaha. Desain halaman laporan dapat dilihat pada **Gambar 3.15**.

Gambar 3.15 Desain Antarmuka Halaman Laporan

3.9 Skenario Pengujian Sistem

Untuk proses pengujian aplikasi sistem maka dilakukan proses pengujian dari sistem dengan cara sebagai berikut :

- 1. Dalam melakukan proses pengujian, data yang digunakan adalah data jumlah penjualan beras di UD. Sumber Tani Lamongan yang nantinya akan dilakukan proses perhitungan peramalan (*forecast*) menggunakan metode *Triple Exponential Smoothing (Brown)*. Dalam skripsi ini perhitungannya akan menggunakan alpha 0,1–0,9. Nilai alpha di gunakan sebagai konstanta pemulusan, nilai alpha juga menentukan hasil dari nilai prediksi.
- Skripsi ini mengambil data jumlah penjualan beras dalam kurun waktu 4 tahun yaitu dari Januari 2014 sampai Agustus 2017
- 3. Perhitungan dalam skripsi ini menggunakan metode *Triple Exponential Smoothing (Brown)*. Perhitungan peramalan (*forecast*) dilakukan sebagai berikut:
 - a. Menggunakan data jumlah penjualan beras selama 3 bulan sebelumnya,
 - b. Menggunakan data jumlah penjualan beras selama 6 bulan sebelumnya,
 - c. Menggunakan data jumlah penjualan beras selama 12 bulan sebelumnya,
- 4. Hasil dari masing-masing percobaan akan dilakukan perhitungan (error) kesalahan/mengevaluasi hasil peramalan yaitu dengan metode Mean Absolute Deviation (MAD) mengukur ketepatan ramalan dengan merata-rata kesalahan dugaan (nilai absolut masing-masing kesalahan) dan Mean Absolute Percentage Error (MAPE) dihitung dengan menggunakan kesalahan absolut pada tiap periode dibagi dengan nilai observasi yang nyata untuk periode itu. Kemudian, merata-rata kesalahan persentase absolut tersebut.