LAMPIRAN 1

Pemodelan Sistem Jaringan Pada Aplikasi DigSilent

Pemodelan sistem jaringan listrik dibuat dari hasil rancangan skenario untuk perbaikan tegangan pada busbar A GI Segoromadu. Pemodelan sistem jaringan listrik dibuat menggunakan *software* DigSilent. Yang berupakan suatu *software* rekayasa yang berguna untuk analisis industri, utilitas, dan analisis sistem tenaga listrik. Perangkat lunak ini telah dirancang sebagai paket perangkat lunak canggih yang terintegrasi dan interaktif yang didedikasikan untuk sistem tenaga listrik dan analisis kontrol dalam rangka mencapai tujuan utama perencanaan dan optimasi operasi.

Pada pembahasan ini akan dijelaskan mengenai pembuatan *Single Line Diagram* Subsistem Gresik sesuai dengan data dari UP2B Jawa Timur. Dalam DIgSILENT untuk membuat *Single Line Diagram* harus di mulai dari pembuatan busbar, kabel, reactor, beban, transformator, dan generator. Elemen yang di sediakan oleh *software* ini berada di sisi sebelah kanan. Untuk menggambarkanya juga hanya perlu melakukan drag and drop ikon yang diinginkan. Pembuatan pemodelan sistem jaringan listrik pada *software* DigSilent membutuhkan data-data inputan pada setiap elementnya seperti berikut

1. Substation (Busbar)

Pada Subsistem Gresik, busbar yang digunakan adalah single, *double*, dan 1¹/₂ busbar. Ikon untuk single busbar adalah sedangkan untuk *double* busbar adalah lalu untuk 1¹/₂ busbar adalah . Ketiga ikon tersebut berada disisi sebelah kanan.

Gambar Tampilan Diagram Busbar

Seperti yang ditunjukan gambar diatas, ikon di dalam kotak merah merupakan beberapa ikon busbar, dan setelah drag and drop ikon menjadi gambar diatas dengan urutan dari kiri ke kanan yaitu single, *double*, dan 1½ busbar. Format penamaan elemen sendiri adalah NamaBusbar/NomorBusbar, dan untuk mengatur nama, tegangan nominal, dan batas tegangan busbar dapat dilakukan dengan *double* klik pada elemen sehingga akan keluar window busbar editor.

	- A A		
Substation Field Similar burget at		Terminal - Grid\SingleBusbar\BB.EImTerm	? ×
Substation - GridtySingleBusbar, ElmSubstat Beso Deta Relabity Descettion Parr Name Degrees V + Degreens(SingleBusbar, ElmSubstat) Degrees V + Default Zone V + Default Zone V + Default Zone V + Normal Voltage 110. kV Set Normal Voltage Running Anargement V + Accel & Flooret Sere as Overwrite Assign by Study Thes Societing Pulse Active Pulse V	OK Cancel Contents	IEC 61343 RMS-Genulation EMT-Simulation Herroricz Optimization State Extension Reliability Generation Adequary Tie Open Port Opt. Description Basic Data Laad Rev VOE/EC Short-Const Corplete Short-Oncut ANSI Short-Oncut Nerve IEC Tope (from Substation) Area + (from	OK Cancel Amp to Gubicites

Gambar Tampilan Pengaturan Busbar

Untuk mengatur nama bisa dilakukan dengan memilih tanda panah didalam kotak warna merah sehingga akan tampil window baru disebelah kiri,

lalu isikan nama pada kolom Name dan Short Name. Tegangan nominal sendiri dapat diatur dengan meng-klik Set Nominal Voltage. Sedangkan batas tegangan busbar dapat diatur pada pilihan *Load Flow* dan akan tampil window editor sebagai berikut.

Voltage Control	1		150	۶V		Jump to
Deta V max	5.	- %	1.00.			Cubicles
Deta V min	-5,	%				
Priority	-1	_				
Steady State Volta;	e Limits					
Max. Voltage	1,05	p.u.				
Min. Voltage	0,95	p.u.				

2. Kabel (Line)

Pada DIgSILENT tidak ada jenis line seperti pada ETAP, hanya terdapat satu jenis dengan ikon. Untuk penggambaran kabel (line) dapata dilakukan dengan memilih ikon line dan hubungkan dengan busbar yang diinginkan. Saat akan menyambungkan dengan busbar akan muncul sheet baru yang menunjukan detail grafik dari busbar tersebut.

Gambar Tampilan Diagram Line

Pada *double* busbar terdapat dua titik (node) yang terlihat seperti gambar diatas, dengan titik hitam berarti tersambung dan titik putih berarti tidak tersambung. Pemutus daya (circuit breaker) sudah secara otomatis ada saat menggambar kabel. Jika ingin mengganti sambungan kabel dari busbar satu ke busbar lain dapat dilakukan dengan klik kanan busabar dan pilih Show Detail Graphic of Substaion. Mengatur data kabel bisa dilakukan dengan *double* klik sehingga muncul window baru. Pada Basic Data ditampilkan sambungan terminal, tipe kabel, parameter kabel, model kabel, jumlah kabel, area, dan zona.

Untuk panjang kabel bisa disikan di bagian Parameters kolom Length of Line, dengan satuan bisa di ganti dengan *double* klik satuan yang ada sehingga akan keluar window baru. Terdapat pilihan satuan menurut Metric, EnglishTransmision, dan English-Industry. Untuk tipe kabel bisa dipilih sesuai yang ada di Library yang sudah ada dari DIgSILENT ataupun PLN. Untuk *project* Subsistem Gresik sendiri diambil dari Library PLN. Dengan memilih Type > Select *Project* Type > Line Type (TypLne).

ANSI Shot-Circuit State Estimator	EC \$13(3) RMS-Smultton	EMT-Simulation Harmonics Optimization	OK
Basic Data	Load Raw VDE/RE	Shat-Qout Complete Shot-Qout	Cancel
iere	.ne		Fore 2
los 3			
feminal i	Select Global Type	891	Junp to
Terrinal (Select Project Type +	Line Type (TypEne)	
Zarie	New Project Type +	Тазлег Туря (ТурТана)	
hea	Parts Tups	Tower Geometry Type (TypGeo)	
Out of Service	Remove Type		
Number of porolei Lines		Reading Values Rated Connect 0.1xX	

Gambar Tampilan Pemilihan Tipe Kabel

Lalu pemilihan tipe akan dilakukan di window *Data Manager*, pilih tipe sesuai data dari PLN dan klik OK.

	144 184			-	1	1	OK
H and Time Bus System	-		Name	Турн	Object modified	Object	
CE CON PERIOD.		- 24	67		04/05/2014 10 20/0	Cardin al .	Canoel
H a Storgen	1.0		CV7		04/05/2014 10 20:0	aut	
E TO Library	10	and a	Librai.		04/05/2014 30 20-0	arts .	Global Type
C 100 Equipment Type Library	11	0,00	Gent		04/05/2014 10 20:0	Cade	
HE COD Library	11		Bac		04/05/2014 10 20:0	ada	Project 1304
🗉 🛄 CT			Ben		04/05/2014 10 20:0	Cardin .	
CVT			Book		04/05/2014 10 20-0	Earth	
H GO East	11	7	CA9-150kV-OI Filed Cable B		04/05/2014 10 20:0	ads	
H 1 8402		17	CA9-150kV-AL 630mm (530A)		04/05/2014 10:20-0	ada	
(ii) 🦕 (Reg)	-	1	CAB-150kV-AL 800mm (730A)		04/05/2014 10 20 0	Earth .	
🛞 🦲 Rep4		1	CA8-150kVCU 1000mm (1150		04/05/2014 10:20:0	ads	
🖹 🐨 Scale	1	22	EA91508VC0E40mm74547		04/05/2014 10:20:0	100	
I TNGAU-TLNGA1		1	[CA9-150kV-CU 240mm (550A)]		04/05/2014 10:20:0	Eadh	
THEAD TENER (1)	1.2	1	CA8-150kV-CU 800mm (920A)		04/05/2014 10:20:0	e adhi	
# / TNGALLTLNGA 10		1	CAB-150kV-OFC 3x300mm (46		04/05/2014 10 20:0	Eadh	
H / TNGAU-TLNGA-1(4)		1	CAB-150kV-PIRELLI 300mm f		04/05/2014 10:20:0	adhi +	
R / TNGAU-TLNGA-15	-11						

Gambar Tampilan Pemilihan Tipe Kabel (Library)

Secara otomatis pada Resulting Values akan muncul hasil sesuia dengan tipe dan panjang kabel. Jika ingin melakukan pengisian kabel secara manual, dapat dilakukan dengan memilih Type > New *Project* Type > Line Type (TypLne).

Reliability	Generatio	n Adequacy	Tie Open Peint Opt	Description	OK
Banic Data Load	Row VDE/IE	C Shot-Circuit Ci	unplete Short-Grouit ANSI 5	hot-Circuit IEC 61363	Cancel
Name	DHL 150KV HA	VK %201.1mm (58			-
Rated Voltage	150.	kV			
Rated Current	0.58	kA			
Nominal Frequency	50.	Hz.			
Cable / OHL	Overhead Line				
System Type	AC.	Phases	3 · No. of Neutrala	0 +	
Parameters per Le	ngth 1.2-Sequen	e	Parameters per Length Zero	Sequence	
Resistance R' (2	NOTC) 0,137	Ohm.4cm	Resistance R0' 0.2	87 Ohm/km	
Bernard	la sece		Bandance WW. Dave	•	

Gambar Tampilan Pemilihan Tipe Kabel (Manual)

Pada pilihan Basic Data, Dapat diisikan Nama, tegangan rating, arus rating, frekuensi nominal, jenis kabel, tipe sistem kabel, fasa kabel, nilai resistansi dan reaktansi (urutan positif, negaif, dan nol). Pada pilihan *Load Flow* juga dapat diisikan nilai suseptansi (urutan positif, negaif, dan nol), suhu maksimal operasikabel, jenis konduktor kabel, nilai resistansi saat suhu maksimal, dan koefisen temperatur. Setelah semua disikan pilih OK dan secara otomatis akan masuk di Library pada *project* ynag kita kerjakan.

3. Reaktor (Shunt / Filter)

Pada Subsistem Gresik shunt/filter yang digunakan adalah shunt/filter C. Untuk penyambungan pada busbar juga sama seperti kabel, pilih jenis reaktor (shunt/filter) dan sambungkan ke busbar yang diinginkan, lalu muncul detail grafik busbar dan sambungan pada titik yang sesuai. Parameter yang diisikan pada reaktor pada window shunt/filter editor bagian Basic Data adalah tegangan nominal dan nonimal daya reaktifnya.

MUH

asic Data	General Measurement Report Zero Sequence/Neutral Conductor	ОК
ad Flow	Name SHN_CAP1_4PMKSN5(1)	Cancel
DE/IEC Short-Circuit	Teminal	
omplete Short-Circuit	Zone 🔺	- rigule 2
NSI Short-Circuit	Area 🔺	Jump to
C 61363	Out of Service	
C Short-Circuit	System Type AC Technology 3PH-Y	
MS-Simulation	Nominal Voltage 150. kV g	
MT-Simulation	Shunt Type C	
armonics/Power Quality	Input Mode Default 💌	
ptimal Power Flow	Controller	
eliability	Max. No. of Steps 1 Max. Rated Reactive Power 50, Mvar	
eneration Adequacy	Act.No. of Step 1 + Actual Reactive Power 50, Mvar	
escription	According to Measurement Report	
	Design Parameter (per Step)	
	Rated Reactive Power, C 50, Mvar Susceptance 2222,222 uS	
	Loss Factor, tan(delta) 0, Parallel Conductance 0, uS	

Gambar Tampilan Pengaturan Shunt Capasitor

4. Beban (Load)

Pada *project* ini beban yang digunakan hampir sebagian besar tidak memiliki tipe khusus dan memakai tipe umum (general) pada library DIgSILENT. Untuk Penyambungan beban juga dilakukan dengan memilih ikon General Load dan menyambungkan dengan busbar, lalu akan keluar detail grafik busbar dan pilih titik sambungan yang tersedia. Parameter yang disiikan pada Load Editor adalah tipe beban di Basic Data dengan cara pilih Type > Select *Project* Type > General Type Load (TypLod). Di *Load Flow* yang diisikan adalah nilai daya aktif (MW) dan daya reaktif (Mvar).

Gambar Tampilan Input Beban

Untuk membuat memilih tipe beban secara manual dapat dilakukan dengan pilih Type > New *Project* Type > General Type Load (TypLod). Akan keluar window baru dan isikan tipe dan teknologi beban di Basic Data dan Voltage Dependence P – Voltage Dependence Q pada Load Flow. Besar nilai daya aktif dan reaktif pada sebuah sistem selalu berubah-ubah, namun pada

project ini besar nilai tersebut di ambil pada beban bulan Januari tahun 2020. Berikut data beban Subsistem Gresik.

5. Transformator

Pada *project* ini transformator yang digunakan adalah 2-Winding Transformer untuk trafo tersebut merupakan trafo 3 fasa. Untuk jenis trafo di DIgSILENT selain yang disebutkan sebelumnya, terdapat 2-N-Winding Trasnformer, 3-Winding Trasnformer(ANSI), Auto Transformer, dan Booster Transformer. Penyambungan juga sama seperti komonen lain, pilih ikon elemen lalu pilih busbar yang menjadi tempat trafo tersambung, maka akan muncul detail grafik dari busbar dan pilih titik yang tersedia. Untuk tipe trafo yang digunakan bisa diambil dari Library dan memasukan data secara manual. Dengan pemilihan jenis trafo di Library sama seperti pemilihan tipe kabel dan beban, yaitu Type > Select *Project* Type. Pemilihan tipe trafo secara manual yaitu dengan cara Type > New *Project* Type untuk tipe 2 belitan (2-Winding Trasnformer) berikut penjelasanya.

2-Winding Transformer - Grid	d\MTR6_4GRLMA51.ElmTr2	? ×
Basic Data	General Grounding/Neutral Conductor	ок
Load Flow	Name MTR6_4GRLMA51	Cancel
VDE/IEC Short-Circuit	Type	
Complete Short-Circuit	HV-Side	Figure >>
ANSI Short-Circuit	LV-Side	Jump to
IEC 61363	Zone HV-Side 💌 🔸	
DC Short-Circuit	Area HV-Side 💌 🍝	
RMS-Simulation	C Out of Service	
EMT-Simulation	Number of Flip Connections	
Harmonics/Power Quality	parallel Transformers 1	
Protection	Themal Rating	
Optimal Power Flow	Rating Factor 1. Rated Power (act.) 27, MVA	
State Estimation		
Reliability	- Supplied Elements	
Generation Adequacy	Mark Elements in Graphic Edit Elements	
Tie Open Point Opt.		
Description		

Gambar Tampilan Basic Data 2 Winding Transformer

Pada tipe ini yang harus dimasukan adalah nama trafo, teknologi trafo, daya rating, frekuensi nominal, tegangan rating untuk sisi tegangan tinggi dan rendah, impedansi urutan positif, pergeseran fasa, dan vektor grup.

Desis Dela				0			Rea	ad Only
Basic Data	Name	MTR 11/15	4kV 2/MVA (YNd1	1)				1
Load Flow	Technology	Three Phas	e Transformer	•			C	ancel
VDE/IEC Short-Circuit	Rated Power	27.	MVA					
Complete Short-Circuit	Nominal Frequency	50.	Hz					
ANSI Short-Circuit	Rated Voltage			Vector Group -				
IEC 61363	HV-Side	154,	kV	HV-Side	YN 💌			
DC Short-Circuit	LV-Side	11.	kV	LV-Side	D 💌			
RMS-Simulation	Positive Sequence Impedan	ce						
EMT-Simulation	Short-Circuit Voltage uk	10,6	%	Phase Shift	11,	*30deg		
Harmonics/Power Quality	Ratio X/R	109,9955		Name	YNd11			
Protection	- Zero Sequence Impedance							
Optimal Power Flow	Short-Circuit Voltage uk0	10.6	%			●		
Reliability	SHC-Voltage (Re(uk0)) uk0r	0.	%					
Generation Adequacy		1						
Description								

Gambar Tampilan Tipe Transformer

6. Generator

Generator yang digunakan pada *project* Subsistem Gresik adalah Syncrhonous Machine, selain jenis itu masih terdapat Asyncrhonous Machine, Doubly-Fed Induction Machine, Static Generator, dan Wind Turbin yang tidak digunakan. Penyambungan generator dapat dilakukan dengan memilih ikon elemen lalu pilih busbar yang menjad tempat tersambungnya generator, setelah itu klik pada busbar tersebut dan akan keluar sheet baru berupa detail grafik busbar dan bisa memilih titik sambungan yang tersedia. Untuk tipe generator juga bisa dilakukan dengan dua cara, melalui Library dan secara input manual. Yang melalui Library dapat dilakukan dengan *double* klik generator lalu memilih Type > Select *Project* Type. Sedangkan input data secara manual dapat dilakukan dengan Type > New *Project* Type, berikut penjelasan data apa saja yang harus diisikan.

Synchronous Machine Type - 15 JAN 2020\Library\Library\Gen 13.2kV 125MVA 0.8pf (D).TypSym ? X Basic Data Name Gen 13.2kV 125MVA 0.8pf (D) Load Row VDE/IEC Short-Circuit Complete Short-Circuit ANSI Short-Circuit IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation Hamonics/Power Quality Protection Optimal Power Row Reliability Generation Adequacy Description			A second s	
Basic Data Name Gen 13.2kV 125MVA 0.8pf (D) Read Only Load Row Nominal Apparent Power 125. MVA Cancel VDE/IEC Short-Circuit Nominal Voltage 13.2 kV Cancel Complete Short-Circuit Power Factor 0.8 Connection D IEC 61363 DC Short-Circuit Connection D I IEC 61363 IEC 61363 IEC Short-Circuit Connection D IEC 61363 IEC	Synchronous Machine Type	- 15 JAN 2020\Library\Librar	y\Gen 13.2kV 125MVA 0.8pf (D).TypSym	? ×
Load Row Nominal Apparent Power 125. MVA Cancel VDE/IEC Short-Circuit Nominal Voltage 13.2 kV Complete Short-Circuit Power Factor 0.8 ANSI Short-Circuit Connection D IEC 61363 D IEC Short-Circuit Power Action D IEC Short-Circuit RMS-Simulation EMT-Simulation EMT-Simulation Optimal Power Row Reliability Generation Adequacy Description Image: Construct of the state of th	Basic Data	Name Gen 13.2kV	125MVA 0.8pf (D)	Read Only
Description	Load Row VDE/IEC Short-Circuit Complete Short-Circuit ANSI Short-Circuit IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation Harmonics/Power Quality Protection Optimal Power Row Reliability	Nominal Apparent Power Nominal Voltage Power Factor Connection	125. MVA 13.2 kV 0.8 0.8 0 ▼	Cancel
	Description	-		

Gambar Tampilan Rating Power dan Tegangan Generator

Pada bagian Basic Data data yang diinputkan adalah nama, daya nominal, tegangan nominal, faktor daya, dan koneksi generator. Setelah semua data diinputkan lalu pilih OK dan secara otomatis akan masuk ke Library dari proyek yang kita kerjakan. Lalu pengaturan lain yang perlu diperhatikan adalah daya aktif dan reaktif yang di suplai dari generator, peran generator (Mode), dan rating daya aktifnya. Berikut pengaturanya. Pengaturan dapat dilakukan pada bagian *Load Flow* Editor, dimana daya aktif dan reaktif yang diinputkan berada di bagian Dispatch, jika peran generator sebagai referensi (Slack/Swing) maka sudut dan tegangan harus diinput juga. Jika sebagai Power Factor Controller (PQ) maka hanya daya aktif dan reaktif san reaktif serta tegangan referensi. Sedangkan untuk rating daya aktif yang diinputkan berada pada bagian Active Power : Ratings.

asic Data	General Advanced Automatic Dispatch		0
oad Flow	Spinning if circuit-breaker is open	de of Local Voltage Controller	
/DE/IEC Short-Circuit	Reference Machine	Power Factor	Car
Complete Short-Circuit	Corresponding Bus Type: PQ C	Voltage	Figu
ANSI Short-Circuit	External Secondary Controller 💌 🔿		Jump
IEC 61363	External Station Controller		
DC Short-Circuit	Dispatch Ca	apability Curve	
BMS-Simulation	Input Mode Default 🗨	(
EMT-Simulation	Active Power 90. MW	qmin/-1.00 1.0000 qmax/ 1.00	
Harmonics/Power Quality	Reactive Power 23, Mvar	0.9887 (0.1870,7	
Protection	Voltage 0,97 p.u.	9.3333	
Optimal Power Flow	Angle 0, deg	L pmiq	
State Estimation	Prim. Frequency Bias 0, MW/Hz	-1,000 -1,333 ,335 1,009,00	
Reliability	- Reactive Power Operational Limits		
Generation Adequacy			
Description	Use limits specified in type		
	Min1, p.u125, Mvar	Scaling Factor (min.) 100, %	
	Max. 1, p.u. 125, Mvar	Scaling Factor (max.) 100, %	
	Antice Reverse On antice and Limits		
	Min 0 MW		
	Max 9999 MW	Po 100 MW	
	Max. 3333, MINY	100, MVV	
	Active Power: Rating		
	Max. 80, MW Rating Factor	0.8 Pn 100, MW	

Gambar Tampilan Pengaturan Load Flow Generator