RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

Sekolah : SMA NU 2 Gresik Mata Pelajaran : Bahasa Inggris Kelas/Semester : XI/Genap

Materi Pokok : Teks Analytical Exposition

Alokasi Waktu : 4 Minggu x 2 Jam Pelajaran @45 Menit

A. Kompetensi Inti

- KI-1 dan KI-2: Menghayati dan mengamalkan ajaran agama yang dianutnya. Menghayati dan mengamalkan perilaku jujur, disiplin, santun, peduli (gotong royong, kerjasama, toleran, damai), bertanggung jawab, responsif, dan pro-aktif dalam berinteraksi secara efektif sesuai dengan perkembangan anak di lingkungan, keluarga, sekolah, masyarakat dan lingkungan alam sekitar, bangsa, negara, kawasan regional, dan kawasan internasional".
- **KI 3:** Memahami, menerapkan, dan menganalisis pengetahuan faktual, konseptual, prosedural, dan metakognitif berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah
- **KI4:** Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, bertindak secara efektif dan kreatif, serta mampu menggunakan metode sesuai kaidah keilmuan

	Kompetensi Dasar	Indikator
	· · · · · · · · · · · · · · · · · · ·	Illulkatul
4.8	Menangkap makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan teks analytical exposition lisan dan tulis, yang tercakup dalam mata pelajaran lain di kelas XI	4.8.1 Memprediksi makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan teks analytical exposition lisan dan tulis, yang tercakup dalam mata pelajaran lain di kelas XI 4.8.2 Menyusun makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan teks analytical exposition lisan dan tulis, yang tercakup dalam mata pelajaran lain di kelas XI 4.8.3 Memberitahu makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan teks analytical exposition lisan dan tulis, yang tercakup dalam mata pelajaran lain di kelas XI
		4.8.4 Menulis makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan teks analytical exposition lisan dan tulis, yang tercakup dalam mata pelajaran lain di kelas XI

4.8.5 Mengevaluasi makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan teks analytical exposition lisan dan tulis, yang tercakup dalam mata pelajaran lain di kelas XI

B. Tujuan Pembelajaran

- -diberi text, Siswa mampu mengetahui isi text dengan membuat pertanyaan prediksi
- -diberi text, siswa mampu menyusun makna yang telah dipahami menggunakan kata-kata sendiri berdasarkan text analytical exposition
- -diberi text siswa mampu mendemonstrasikan
- -diberi text, siswa mampu menulis jawaban dari prediksi pertanyaan yang telah dibuat masing-masing siswa/i
- -diberi text, siswa mampu mengevaluasi hasil kinerja mengenai pemahaman soal text analytical exposition yang telah diberikan

C. Materi Pembelajaran

- Fungsi Sosial Menjelaskan sesuatu hal yang penting atau issue yang didukung oleh argumen untuk persuade masyarakat
- Struktur Teks
- -Thesis
- -Argument
- -Reiteration
- Unsur Kebahasaan
- Menggunakan simple present
- Menggunakan internal conjuction
- Menggunakan causal conjuction
- Topik

Analytical Exposition

• Materi

The Importance of Breakfast

Why is breakfast important? "Breakfast like a King, Lunch like a Prince and Dine like a Pauper" It's a well known phrase, but do you follow it? Breakfast provides many benefits to our health and wellbeing. Breakfast provides the body and brain with fuel after an overnight fast – that's where its name originates, breaking the fast! Without breakfast you are effectively running on empty, like trying to start the car with no petrol! Breakfast support cognitive function. Breakfast also restores glucose levels, an essential carbohydrate that is needed for the brain to function. Breakfast provides energy, studies have shown how eating breakfast can improve memory and concentration levels and it can also make us happier as it can improve mood and lower stress levels.

Breakfast provides energy needs. People's energy needs vary depending on activity levels and life stage but typically men require more energy than women. Growing children require a lot of energy, as an example boys aged 7-10 years should consume approximately 1970 kcals per day, and girls aged 7-10 years should consume approximately 1740 kcals. So, breakfast is very important and really affect our daily activity.

D. Metode Pembelajaran

1) Pendekatan : Saintific

2) Model Pembelajaran : Discovery Learning

3) Metode : PORPE

E. Media Pembelajaran

- 1. Media
 - ❖ Worksheet atau lembar kerja (siswa)
 - Lembar penilaian
 - **A** Laptop
 - Proyektor
- 2. Alat/Bahan
 - Penggaris, spidol, papan tulis

F. Sumber Belajar

❖ Buku Penunjang Kurikulum 2013 Mata Pelajaran Bahasa Inggris Kelas XI, Kemendikbud, Revisi Tahun 2017, Internet.

G. Rubrik Penilaian Soal essay

• Ketentuan penilaian

Skor yang dicapai : skor maksimum X 100

Indicator 1:

3		_		
		2	1	0
Siswa dapa	at Siswa	dapat	Siswa hanya	
mempredil	1	orediksi	dapat	Siswa tidak
minimal 2	minin	nal 2	memprediksi 1	dapat membuat
pertanyaan	pertai	nyaan	pertanyaan	pertanyaan
Predict menggunal	kan meng	gunakan	menggunakan	prediksi
salah satu	salah	satu	salah satu	
keyword "	keyw	ord "	keyword "	7/
discuss,	discus	ss,	discuss,	
contrast,	contra	ast,	contrast,	
compare or	r comp	are or	compare or	
critisize" d	engan critisi	ze" dengan	critisize" dengan	
susunan ya	ing susun	an yang	susunan yang	< 11
tepat dan b	enar kuran	g tepat	kurang tepat	
	11111	2). [[
			14.5	- //

Indicator 2

	3	2	1	0
Organize	Siswa dapat membuat short- summary yang mencakup inti dari bacaan analytical exposition(thesis,	Siswa dapat membuat short- summary yang kurang mencakup inti dari bacaan analytical exposition	Siswa dapat membuat short- summary yang kurang mencakup inti dari bacaan analytical exposition	Siswa tidak dapat membuat short summary
	argument, reiteration) menggunakan bahasa mereka sendiri	(hanya thesis dan argument) dengan menggunakan bahasa mereka sendiri	(hanya thesis) dengan menggunakan bahasa mereka sendiri	

Indicator 3

	l A Y A	V W	
Z	2		0
Rehease	Siswa dapat membaca apa yang sebelumnya mereka summary secara verbal dan mencakup seluruh generic structure.	Siswa dapat membaca apa yang sebelumnya mereka summary secara verbal dengan generic structure yang tidak lengkap	Siswa dapat membaca apa yang sebelumnya mereka summary namun random, tidak sesuai dengan generic sturcture

Indicator 4

	3	2	1	0
Practice	Siswa dapat menjawab pertanyaan prediksi yang mereka buat dengan benar dan jelas dan	Siswa dapat menjawab pertanyaan prediksi yang mereka buat dengan benar namun tidak	Siswa dapat menjawab satu pertanyaan prediksi yang mereka buat dengan benar namun tidak	Siswa tidak dapat menjawab pertanyaan prediksi yang mereka buat sendiri.
	lengkap.	lengkap.	lengkap.	

Indicator 5

	3	2 . 1	1	0
Evaluate	Siswa memperoleh 5 poin centang dalam evaluation point checklist	Siswa memperoleh 3- 4 poin centang dalam evaluation poin checklist	Siswa dapat memperoleh 2 – 1 point centang dalam evaluation checklist	Siswa tidak memperoleh checklist centang sama sekali
	* G	RES	*	

Mengetahui,

English Teacher Researcher

Dra. Elies Setyo Rini Aisyatul Bararah

NIG. 107 021 1762 NIM. 14431032

SCHEDULE OF IMPLEMENTATION

TIME	SCHEDULE
1 Oktober 2019	Pre – Test IPA 3
2 Oktober 2019	Pre – Test IPA 2
3Oktober 2019	Experimental class IPA 3
4 Oktober 2019	Control class IPA 2
7 Oktober 2019	Experimental class IPA 3
8 Oktober 2019	Control class IPA 2
9 Oktober 2019	Experimental class IPA 3
10 Oktober 2019	Control class IPA 2
14 Oktober 2019	Experimental class IPA 3
15 Oktober 2019	Control class IPA 2
16 Oktober 2019	Post- Test IPA 3
17 Oktober 2019	Post – Test IPA 2

SYLLABUS OF ANALYTICAL EXPOSITION

Kompetensi Dasar	Materi Pokok	Pembelajaran	Penilaian	Alokasi Waktu	Sumber Belajar
1.1 Mensyukuri kesempatan dapat mempelajari bahasa Inggris sebagai bahasa pengantar komunikasi International yang diwujudkan dalam semangat belajar 2.3 Menunjukkan perilaku tanggung jawab, peduli, kerjasama, dan cinta damai, dalam melaksanakan komunikasi fungsional 3.10 Menganalisis fungsi sosial, struktur teks, dan unsur kebahasaan dari teks eksposisi analitis tentang topik yang hangat dibicarakan umum, sesuai dengan konteks penggunaanny a. 4.14 Menangkap makna dalam teks eksposisi	Teks eksposisi analitis Fungsi Sosial Menyatakan pendapat tentang topik yang hangat dibicarakan secara bertanggung jawab Struktur teks a. Menyebutkan pokok permasalahan terhadap sesuatu yang hangat dibicarakan b. Menyebutkan pandangan / pendapat mengenai hal tersebut beserta ilustrasi sebagai pendukung c. Diakhiri dengan kesimpulan yang menyatakan kembali pendapat terhadap hal tersebut Unsur Kebahasaan: - Kalimat Simple Present - Conditional Clauses Modals	Mengamati Siswa menyimak berbagai contoh teks eksposisi analisis yang diberikan/ diperdengarkan guru Siswa mengamati fungsi sosial, struktur dan unsur kebahasaannya Siswa belajar menemukan gagasan utama, informasi rinci dan informasi tertentu dari teks eksposisi analitis Mempertanyakan (questioning) Dengan bimbingan dan arahan guru, siswa mempertanyakan antara lain perbedaan antara berbagai teks eksposisi yang ada dalam bahasa Inggris, Siswa mempertanyakan gagasan utama, informasi rinci dan informasi rinci dan informasi tertentu Mengeksplorasi Siswa mencari beberapa text	Kriteria penilaian: Pencapaian fungsi sosial Kelengkapan dan keruntutan struktur teks eksposisi analitis Ketepatan unsur kebahasaan: tata bahasa, kosa kata, ucapan, tekanan kata, intonasi, ejaan, dan tulisan tangan Kesesuaian format penulisan/ penyampaian Pengamatan (observations): Bukan penilaian formal seperti tes, tetapi untuk tujuan memberi balikan. Sasaran penilaian adalah: Berperilaku tanggung jawab, peduli, kerjasama, dan cinta damai, dalam melaksanakan komunikasi Ketepatan dan kesesuaian dalam menyampaikan dan menulis	4 x 2 JP	CD/ Audio/VCD Koran/ majalah berbahasa Inggris Sumber dari internet: www.dailyengli sh.com http://american english.state.g ov/files/ae/reso urce files http://learnenglish.britishcoun cil.org/en/

analitis tentang	
topik yang	
topik yang	
nangat	
hangat dibicarakan	
umum	•
amam	
	•
	L XXA
	Man
	Mer
	GD
	•

- eksposisi analitis dari berbagai sumber.
- Siswa berlatih menemukan gagasan utama, informasi rinci dan informasi tertentu
- Siswa secara berkelompok menuliskan /menyalin teks eksposisi analitis dengan memperhatikan fungsi sosial, struktur, dan unsur kebahasaan dengan runtut
- Siswa
 membacakan
 teks eksposisi
 kepada teman
 dengan
 menggunakan
 unsur
 kebahasaan yang
 tepat

Mengasosiasi

- Secara
 berpasangan
 siswa
 menganalisis
 beberapa teks
 eksposisi dengan
 fokus pada fungsi
 sosial, struktur,
 dan unsur
 kebahasaan
- Siswa
 memperoleh
 balikan
 (feedback) dari
 guru dan teman
 tentang hasil
 analisis yang

- teks eksposisi analitis
- Kesungguhan siswa dalam proses pembelajaran dalam setiap tahapan
- Ketepatan dan kesesuaian menggunakan strategi dalam membaca

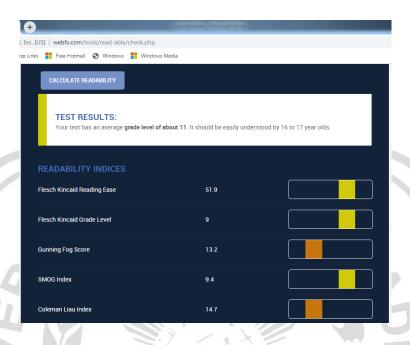
Portofolio

- Kumpulan catatan kemajuan belajar
- Kumpulan hasil tes dan latihan.
- Catatan atau rekaman penilaian diri dan penilaian sejawat, berupa komentar atau cara penilaian lainnya

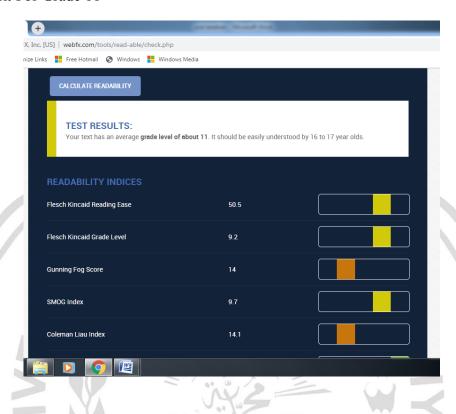
Penilaian Diri dan Penilaian Sejawat

Bentuk: diary, jurnal, format khusus, komentar, atau bentuk penilaian lain

Mengkomunikasika n Siswa membuat laporan berupa catatan hasil membaca dan mendengarkan Berkelompok, siswa bertukar cerita tentang teks eksposisi dengan memperhatikan fungsi sosial, struktur dan unsur kebahasaannya. Siswa mempresentasika nnya di kelas Membuat laporan evaluasi diri secara tertulis tentang pengalaman masing-masing dalam mencari teks eksposisi selama proses pembelajaran di dalam dan di luar kelas, termasuk kendala yang dialami. Siswa membuat laporan dialami.		disampaikan dalam kerja kelompok.
siswa bertukar cerita tentang teks eksposisi dengan memperhatikan fungsi sosial, struktur dan unsur kebahasaannya. Siswa mempresentasika nnya di kelas Membuat laporan evaluasi diri secara tertulis tentang pengalaman masing-masing dalam mencari teks eksposisi selama proses pembelajaran di dalam dan di luar kelas, termasuk kendala yang dialami. Siswa membuat		n • Siswa membuat laporan berupa catatan hasil membaca dan
mempresentasika nnya di kelas • Membuat laporan evaluasi diri secara tertulis tentang pengalaman masing-masing dalam mencari teks eksposisi selama proses pembelajaran di dalam dan di luar kelas, termasuk kendala yang dialami. Siswa membuat	AS	siswa bertukar cerita tentang teks eksposisi dengan memperhatikan fungsi sosial, struktur dan unsur
dalam mencari teks eksposisi selama proses pembelajaran di dalam dan di luar kelas, termasuk kendala yang dialami. Siswa membuat		mempresentasika nnya di kelas • Membuat laporan evaluasi diri secara tertulis tentang pengalaman
'learning journal'	X G	dalam mencari teks eksposisi selama proses pembelajaran di dalam dan di luar kelas, termasuk kendala yang dialami.
		Siswa membuat 'learning journal'


														Corre					The same												
VAR00001 Pearson Correlation	VAR00001 VA	.812"	.431	.321 VAR00004	VAR00005	.812" \	.812"	231	.812"	.812"	.812"	.624"	.812"	010	VAR00015 .431	VAR00016 .431	231	171 VAR00018	231	010	/AR00021 010	.726"	.211	1.000"	010	VAR00026 .909"	010	VAR00028 .431	VAR00029 '	VAR00030 J	.466°
Sig. (2-tailed)		.000	.045	.145	.347	.000	.000	.302	.000	.000	.000	.002	.000	.965	.045	.045	.302	.446	.302	.965	.965	.000	.347	.000	.965	.000	.965	.045	.045	.045	.029
VAR00002 Pearson Correlation	.812"	22	.431	.321	.211	.812"	1.000"	231	.812"	.812"	.812"	.624"	.812"	010	.431	.431	010	171	231	.211	010	.726"	.211	.812"	010	.909"	010	.431°	.431	.431°	.518°
Sig. (2-tailed)	.000	22	.045	.145	.347 22	.000	.000	.302	.000	.000	.000	.002 22	.000	.965	.045	.045 22	.965 22	.446 22	.302	.347	.965 22	.000	.347 22	.000	.965 22	.000	.965 22	.045	.045	.045	.013 22
VAR00003 Pearson Correlation	.431	.431	1	.886**	.224	.431	.431	294	.431	.652"	.431	.431	.652"	294	.224	.224	035	138	035	035	.482	.376	.224	.431	.482	.492	.482	.224	1.000**	.224	.365
Sig. (2-tailed) N	.045 22	.045 22	22	.000	.317 22	.045	.045	.184	.045	.001	.045 22	.045	.001	.184	.317 22	.317 22	.876 22	.541 22	.876 22	.876 22	.023	.084	.317	.045 22	.023	.020 22	.023 22	.317	.000 22	.317 22	.095 22
VAR00004 Pearson Correlation Sig. (2-tailed)	.321 .145	.321 .145	.886"	1	.155 .491	.321 .145	.321	332 .131	.321	.528*	.321 .145	.321 .145	.528° .011	332 .131	.155 .491	.155 .491	.155 .491	199 .374	.155	089 695	.399	.261 .241	.155 .491	.321	.399 .066	.386	.399 .066	.155 .491	.886"	.155 .491	.343 .118
N	.145	.145	.000	22	.491 22	.145	.145	.131	.145	.011	.145	.145	.011	.131	.491 22	.491	.491 22	.374	.491	.695	.066	.241	.491	.145	.066	.076	.066	.491	.000	.491	.118
VAR00005 Pearson Correlation Sig. (2-tailed)	.211	.211 .347	.224	.155	1	.211	.211 .347	294 .184	.211	.431	.211	010 .965	.431° .045	035 .876	.741"	.741"	035 .876	.673	294 .184	.224	.482° .023	.158 .481	.224	.211	.023	.266	.482° .023	.741"	.224	.741"	.426° .048
N VAR00006 Pearson Correlation	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	.363
Sig. (2-tailed)	.812"	.812"	.431	.321	.211 .347	1	.812"	231 .302	1.000"	.812"	.812"	.624" .002	.812"	010 .965	.431° .045	.045	231 .302	370 .090	231 .302	010 .965	010 .965	.726"	.211	.000	010 .965	.909"	010 .965	.431"	.431	.431	.363
N VAR00007 Pearson Correlation	.812"	1.000"	.431°	.321	.211	.812"	22	231	.812"	.812"	.812"	.624"	.812"	010	.431	.431°	010	171	231	.211	010	.726"	.211	.812"	010	.909"	010	.431	.431'	.431°	.518°
Sig. (2-tailed)	.000	.000	.045	.145	.347	.000		.302	.000	.000	.000	.002	.000	.965	.045	.045	.965	.446	.302	.347	.965	.000	.347	.000	.965	.000	.965	.045	.045	.045	.013
VAR00008 Pearson Correlation	231	231	294	332	294	231	231	1	231	231	231	231	231	035	294	294	294	138	035	294	294	059	294	231	294	184	294	294	294	294	608"
Sig. (2-tailed) N	.302 22	.302 22	.184	.131	.184 22	.302	.302 22	22	.302	.302	.302	.302	.302	.876 22	.184 22	.184	.184 22	.541 22	.876 22	.184	.184	.793 22	.184	.302	.184	.411	.184 22	.184	.184 22	.184	.003 22
VAR00009 Pearson Correlation	.812"	.812**	.431	.321	.211	1.000"	.812"	231	///1	.812"	.812"	.624"	.812**	010	.431	.431	231	370	231	010	010	.726"	.211	.812"	010	.909"	010	.431	.431	.431	.363
Sig. (2-tailed) N	.000 22	.000 22	.045 22	.145 22	.347 22	.000 22	.000 22	.302 22	22	.000 22	.000	.002 22	.000	.965 22	.045 22	.045 22	.302 22	.090	.302	.965 22	.965 22	.000 22	.347 22	.000 22	.965 22	.000 22	.965 22	.045 22	.045 22	.045 22	.097 22
VAR00010 Pearson Correlation Sig. (2-tailed)	.812"	.812**	.652"	.528	.431° .045	.812"	.812"	231 .302	.812"	1	.812**	.624" .002	1.000	010 .965	.431	.431° .045	231 .302	370 .090	231 .302	010 .965	.211	.726" .000	.431	.812 ^{**}	.211 .347	.909"	.211	.431	.652"	.431° .045	.518° .013
N VAR00011 Pearson Correlation	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
VAR00011 Pearson Correlation Sig. (2-tailed)	.812" .000	.812"	.431	.321	.211 .347	.812"	.000	-,231 .302	.812"	.812"	1	.624" .002	.812"	.211 .347	.431° .045	.431° .045	231 .302	171 .446	231 .302	010 .965	010 .965	.726"	.211	.812"	010 .965	.909**	010 .965	.045	.431° .045	.431° .045	.518° .013
N VAR00012 Pearson Correlation	.624"	.624"	.431	.321	010	.624"	.624"	231	.624"	.624"	.624"	22	.624"	010	22 .211	22 -211	010	-171	010	010	010	.540"	.211	.624"	010	.716"	010	.211	22 .431	.211	.363
Sig. (2-tailed)	.002	.002	.045	.145	.965	.002	.002	.302	.002	.002	.002	'	.002	.965	.347	.347	.965	.446	.965	.965	.965	.009	.347	.002	.965	.000	.965	.347	.045	.347	.097
VAR00013 Pearson Correlation	.812"	.812"	.652"	.528	.431	.812"	.812"	231	.812"	1.000"	.812"	.624"	1	010	.431	.431	231	370	231	010	.211	.726"	.431	.812"	.211	.909"	.211	.431	.652"	.431°	.518°
Sig. (2-tailed) N	.000 22	.000	.001 22	.011 22	.045 22	.000	.000	.302 22	.000	.000	.000	.002 22	22	.965 22	.045 22	.045 22	.302 22	.090	.302	.965 22	.347	.000	.045	.000	.347 22	.000 22	.347 22	.045	.001 22	.045 22	.013 22
VAR00014 Pearson Correlation	010	010	294	332	035	010	010	035	010	010	.211	010	010	1	035	035	035	.095	294	.224	294	.158	035	010	294	.041	294	035	294	035	.243
Sig. (2-tailed) N	.965 22	.965 22	.184 22	.131 22	.876 22	.965 22	.965 22	.876 22	.965 22	.965 22	.347 22	.965 22	.965 22	22	.876 22	.876 22	.876 22	.673 22	.184 22	.317 22	.184 22	.481 22	.876 22	.965 22	.184 22	.856 22	.184 22	.876 22	.184 22	.876 22	.275 22
VAR00015 Pearson Correlation Sig. (2-tailed)	.431° .045	.431° .045	.224	.155 .491	.741"	.431	.431° .045	294 .184	.431° .045	.431	.431° .045	.211	.431° .045	035 .876	1	1.000"	035 .876	.095 .673	294 .184	.482	.224	.376 .084	035 .876	.431	.224 .317	.492°	.224	1.000**	.224	1.000**	.426° .048
N	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
VAR00016 Pearson Correlation Sig. (2-tailed)	.431° .045	.431	.224	.155 .491	.741"	.431	.045	294 .184	.045	.431	.431° .045	.211 .347	.431° .045	035 .876	1.000**	3 7	035 .876	.095	294 .184	.023	.224 .317	.376	035 .876	.431	.224 .317	.492° .020	.224	1.000**	.224	1.000**	.426° .048
N VAR00017 Pearson Correlation	-,231	010	035	.155	035	231	010	294	231	231	231	010	231	035	035	- 035	22	.095	035	22 482	.224	277	035	231	.224	184	.224	035	035	035	.243
Sig. (2-tailed)	.302	.965	.876	.491	.876	.302	.965	.184	.302	.302	.302	.965	.302	.876	.876	.876	14 M	.673	.876	.023	.317	.212	.876	.302	.317	.411	.317	.876	.876	.876	.275
VAR00018 Pearson Correlation	171	171	138	199	.095	370	171	138	370	370	171	171	370	.095	.095	.095	.095	22	-,138	.095	.095	232	370	171	.095	314	.095	.095	138	.095	.109
Sig. (2-tailed)	.446 22	.446 22	.541	.374	.673 22	.090	.446	.541	.090	.090	.446	.446	.090	.673 22	.673	.673	.673 22	W 22	.541	.673	.673 22	.300	.090	.446	.673 22	.155 22	.673 22	.673	.541 22	.673 22	.628 22
VAR00019 Pearson Correlation	231	231	035	.155	294	231	231	035	231	231	231	010	231	294	294	294	035	138	1	294	035	059	035	231	035	184	035	294	035	294	.000
Sig. (2-tailed) N	.302 22	.302 22	.876 22	.491 22	.184 22	.302 22	.302	.876 22	.302 22	.302	.302	.965 22	.302 22	.184 22	.184	.184 22	.876 22	.541 22	22	.184	.876 22	.793 22	.876 22	.302 22	.876 22	.411 22	.876 22	.184 22	.876 22	.184 22	1.000 22
VAR00020 Pearson Correlation Sig. (2-tailed)	010 .965	.211	035 .876	089 .695	.224 .317	010 .965	.211	294 .184	010 .965	010 .965	010 .965	010 .965	010 .965	.224 .317	.482*	.482° .023	.482' .023	.095 .673	294 .184	1	035 .876	059 .793	294 .184	010 .965	035 .876	.041	035 .876	.482	035 .876	.482° .023	.304 .169
N	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
VAR00021 Pearson Correlation Sig. (2-tailed)	010 .965	010 .965	.023	.399	.482"	010 .965	010 .965	294 .184	010 .965	.211	010 .965	010 .965	.211	294 .184	.224	.224	.224	.095	035 .876	035 .876	1	.158	.023	010 .965	1.000"	.041	1.000"	.224	.023	.224	.365 .095
N VAR00022 Pearson Correlation	.726**	.726"	.376	.261	.158	.726**	.726"	059	.726"	.726"	.726"	.540"	.726"	.158	.376	.376	277	232	059	059	.158	22	.376	.726 ···	.158	.828"	.158	.376	.376	.376	.563"
Sig. (2-tailed)	.000	.000	.084	.241	.481	.000	.000	.793	.000	.000	.000	.009	.000	.481	.084	.084	.212	.300	.793	.793	.481		.084	.000	.481	.000	.481	.084	.084	.084	.006
VAR00023 Pearson Correlation	.211	.211	.224	.155	.224	.211	.211	294	.211	.431°	.211	.211	.431°	035	035	035	035	370	035	294	.482°	.376	22	.211	.482°	.266	.482°	035	.224	035	.304
Sig. (2-tailed) N	.347 22	.347 22	.317 22	.491 22	.317 22	.347	.347 22	.184	.347 22	.045	.347 22	.347 22	.045	.876 22	.876 22	.876 22	.876 22	.090 22	.876 22	.184 22	.023	.084	22	.347 22	.023 22	.231 22	.023 22	.876 22	.317 22	.876 22	.169 22
VAR00024 Pearson Correlation Sig. (2-tailed)	1.000"	.812**	.431	.321	.211	.812"	.812"	231	.812**	.812"	.812**	.624"	.812"	010	.431	.431	231	171	231	010	010	.726"	.211	1	010 965	.909"	010	.431*	.431	.431	.466
N	.000 22	.000 22	.045 22	.145 22	.347 22	.000 22	.000 22	.302 22	.000 22	.000 22	.000 22	.002 22	.000 22	.965 22	.045 22	.045 22	.302 22	.446 22	.302 22	.965 22	.965 22	.000 22	.347 22	22	.965 22	.000 22	.965 22	.045 22	.045 22	.045 22	.029 22
VAR00025 Pearson Correlation Sig. (2-tailed)	010 .965	010 .965	.482° .023	.399	.482° .023	010 .965	010 .965	294 .184	010 .965	.211	010 .965	010 .965	.211	294 .184	.224 .317	.224 .317	.224 .317	.095	035 .876	035 .876	1.000"	.158 .481	.482° .023	010 .965	1	.041	1.000"	.224	.482° .023	.224	.365 .095
N VAR00026 Pearson Correlation	22	22	22	22	22	22	22	22	22	22	22	A 22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
Sig. (2-tailed)	.909"	.000	.492" .020	.386	.266 .231	.909"	.909"	184 .411	.909"	.909"	.909.	.716" .000	.000	.041 .856	.020	.020	184 .411	314 .155	184 .411	.041 .856	.041 .856	.828"	.266 .231	.909.	.041 .856	// 1	.041 .856	.492° .020	.492° .020	.492° .020	.530° .011
N VAR00027 Pearson Correlation	010	010	.482"	.399	.482°	010	010	294	010	.211	010	010	.211	294	.224	22 .224	.224	.095	035	035	1.000"	.158	.482	010	1.000"	.041	22	.224	.482°	.224	.365
Sig. (2-tailed)	.965 22	.965 22	.023	.066	.023 22	.965	.965	.184	.965	.347	.965	.965	.347 22	.184	.317	.317	.317	.673 22	.876 22	.876	.000	.481	.023	.965	.000	.856	20	.317	.023 22	.317 22	.095
VAR00028 Pearson Correlation	.431	.431	.224	.155	.741"	.431	.431	294	.431	.431	.431	.211	.431	035	1.000"	1.000"	035	.095	294	.482	.224	.376	035	.431	.224	.492	.224	1	.224	1.000"	.426
Sig. (2-tailed) N	.045 22	.045 22	.317 22	.491 22	.000 22	.045 22	.045 22	.184	.045 22	.045 22	.045 22	.347 22	.045 22	.876 22	.000 22	.000 22	.876 22	.673 22	.184 22	.023 22	.317 22	.084 22	.876 22	.045 22	.317 22	.020 22	.317 22	22	.317 22	.000 22	.048 22
VAR00029 Pearson Correlation Sig. (2-tailed)	.431° .045	.431	1.000"	.886"	.224	.431	.431	294 .184	.431	.652**	.431° .045	.431	.652"	294 .184	.224	.224	035 .876	138 .541	035 .876	035 .876	.482	.376 .084	.224	.431	.482	.492° .020	.482° .023	.224	1	.224	.365
N	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
VAR00030 Pearson Correlation Sig. (2-tailed)	.431° .045	.431	.224	.155 .491	.741**	.431° .045	.431° .045	294 .184	.045	.431	.431° .045	.211 .347	.045	035 .876	1.000°° .000	1,000**	035 .876	.095 .673	294 .184	.023	.224	.376 .084	035 .876	.045	.224	.492° .020	.224	1.000**	.224	1	.426° .048
N JUMLAH Pearson Correlation	.466	.518	.365	.343	22	.363	.518*	608**	.363	22	.518	.363	.518	22	22	22	.243	22	22	.304	22	.563"	.304	22	22	.530°	22	.426	22	22	22
Sig. (2-tailed)	.029	.013	.365	.118	.426° .048	.363	.518	.003	.363	.518°	.518	.363 .097	.518	.243 .275	.426° .048	.426° .048	.243	.109 .628	1.000	.169	.365 .095	.563"	.169	.466° .029	.365 .095	.530° .011	.365 .095	.048	.365 .095	.426° .048	1
N	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22

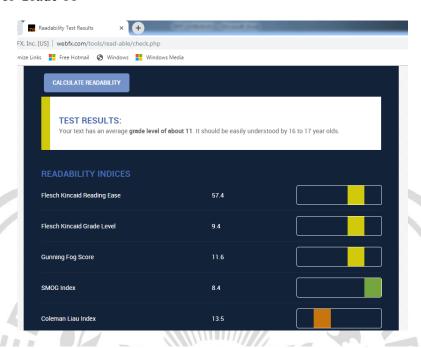
^{**.} Correlation is significant at the 0.01 level (2-tailed).


*. Correlation is significant at the 0.05 level (2-tailed).

READABILITY DATA

1. Text For Grade 11

In Australia there are three levels of governments, the federal government, state governments and local governments. All of these levels of government are necessary. This is so for number of reasons. First, the federal government is necessary for the big things. They keep the economy in order and look after like defensE. Similarly, the state governments look after the middle sized things. For example they look after law and order, preventing things like vandalism in school. Finally, local government look after the small thins. They look after things like collecting rubbish, otherwise everyone would have diseasE. Thus for the reason above, we can conclude that the three levels of the government are necessary.


There is no best way to deal with pests in agriculture. Pesticides which are commonly used may cause many problems. I think combining different management operations is the most effective way to control pests.

Firstly, the chemicals in the pesticides may build up as residues in the environment and in the soil which absorbs the chemicals. This reduces the quality of farm product.

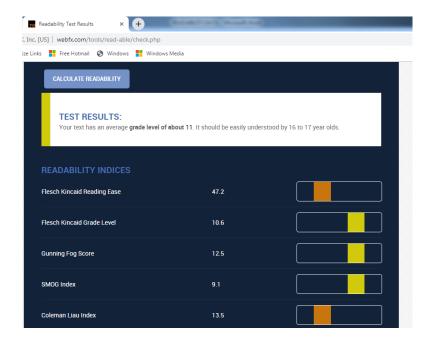
Secondly, pests can gradually become resistant to pesticides. This means that newer and stronger ones have to be developed.

Lastly, some pesticides affect non target plants and animals such as fish and bees. This affects the ecology and environment as well.

So, understanding of ecology of an area helps a lot in pest control. Pesticides should be chosen and applied carefully so that they don't affect the ecological balance and environment. Therefore, integrated pest management is a safe and more effective option to fight pest in agriculture and livestock.

Thousands of macaques are bred or captured from the wild to be used as street performers, or known as "topeng monyet". The macaques are used to perform street shows; wearing funny masks, riding bicycles, performing acrobatic moves and doing amusing things. However, such shows should be banned for few reasons.

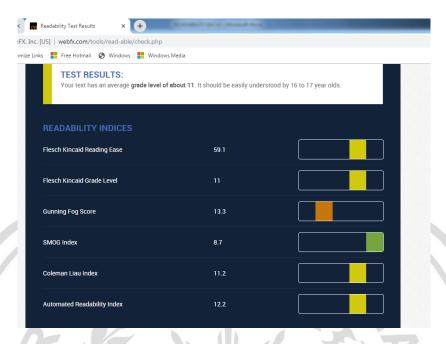
First, topeng monyet is a kind of exploitation of monkeys for money. The monkeys are hung from chains for long periods to train them to walk on their hind legs like humans. Their teeth are extracted so they can't bite and they are tortured to remain obedient. The monkeys are often outfitted in dresses and cowboy hats and forced to carry parasols or ride tiny bikes. This animal abuse will definitely hurt the monkeys.


Second, the ban of masked monkey show can help improve public order. Topeng monyet is often performed when traffic is backed up at notoriously congested intersections. This will disturb the sight and create traffic jams for many motorists or pedestrians will slow down to watch the shows.

Third, banning the dancing monkeys is a necessary public health measure. It is important to rescue the monkeys from street performances and help prevent diseases carried by the monkeys.

The monkeys used in topeng monyet may not be healthy and may have potential to some diseases such as tuberculosis and hepatitis.

Considering the reasons stated above, topeng monyet should be banned for it exploits the monkeys, causes traffic jams and spreads illnesses such as tuberculosis and hepatitis.


https://www.englishcafe.co.id/ujian-nasional-analytical-exposition/

There are many reasons why people become vegetarians, including personal health, the environment, and the economy. A vegetarian is a person who does not eat meat, poultry, and fish. Vegetarians mostly eat fruit, vegetables, legumes, grains, seeds, and nuts. Vegetarians also consume eggs and dairy products, but they avoid meat products, such as beef, chicken stocks, and gelatin. According to research, vegetarians have lower risk of heart disease, high cholesterol, diabetes, obesity, and high blood pressure. This may happen due to a healthy vegetarian diet, which has low fat but high fibre.

However, a vegetarian diet can be high in fat if it includes excessive amounts of fatty snacks, fried food, whole dairy products, and eggs. At the same time, a vegetarian diet can be simple and easy to prepare. Therefore, a vegetarian diet must be well-planned to prevent and treat certain diseases.

https://www.englishcafe.co.id/ujian-nasional-analytical-exposition/

Mentally Ill Person Wander Around Freely On The Street

I personally think that a person with a mental illness that we usually find wandering around our neighborhood aimlessly is not dangerous, but a serious act need to be done on this matter. The following reasons will show you why we need to do something to insane people.


Firstly, people with mental illness who walk around our neighborhood or workplace may look scary beause most of the time they are found in dirty condition and in zombie-like state (having no consciousness), but they rarely endanger the people around them, except they were disturbed first. Placing them in a secure place will minimize the chance of them being disturbed by irresponsible people compare to when we let them wander around on the street freely.

Secondly, loosing their conscious mind does not mean that they have forgotten their basic instinct for food, drinks and self preservation. We can imagine what will happen when they feel hungry or thirsty when they are roaming around on the street. They will cause trouble to the people around them. Keeping them in a special place will prevent this problem. It will bring security for the insane people and also for the society.

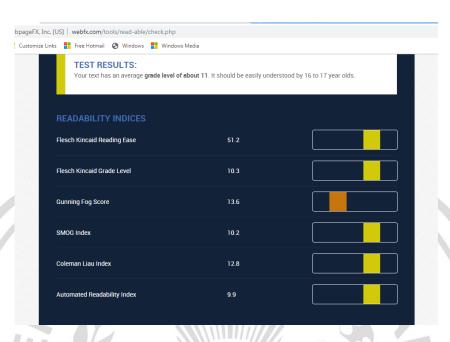
Thirdly, people with mental illness may not have a healthy mind, but they do have a healthy body or at least healthy body parts. Without anyone caring, they are the best target of human trafficking business as no one will notice if they are disappear. That is why we need to protect them by placing them in a secure facility where we can always check on their condition and make sure that they are safe.

Based on the explanations above, it is clear that we need to protect the people with mental illness by placing them in a special and secure facility where we can take care of them and cure them if it is possible.

https://www.bigbanktheories.com/penjelasan-lengkap-analytical-exposition-text-dan-contohnya/

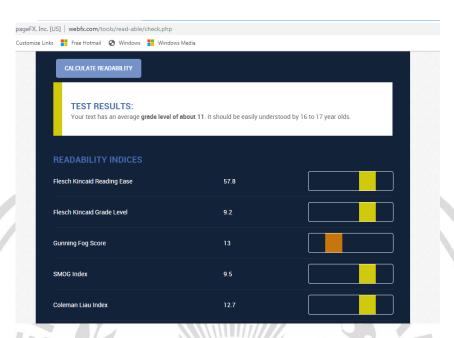
Integrated Pest Management

There is no best way to deal with pests in agriculture. Pesticides which are commonly used may cause many problems. I think combining different management operations is the most effective way to control pests.


Firstly, the chemicals in the pesticides may build up as residues in the environment and in the soil which absorbs the chemicals. This reduces the quality of farm product.

Secondly, pests can gradually become resistant to pesticides. This means that newer and stronger ones have to be developed.

Lastly, some pesticides affect non target plants and animals such as fish and bees. This affects the ecology and environment as well.


So, understanding of ecology of an area helps a lot in pest control. Pesticides should be chosen and applied carefully so that they don't affect the ecological balance and environment. Therefore, integrated pest management is a safe and more effective option to fight pest in agriculture and livestock.

https://englishahkam.blogspot.com/2012/12/teks-analytical-exposition-jawaban.html

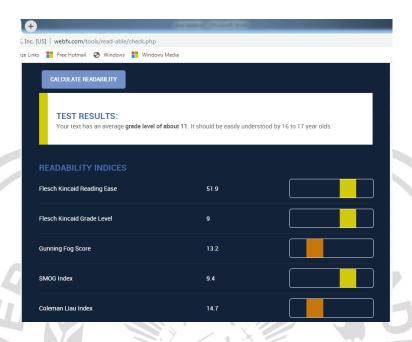
The use of formalin and other dangerous preservatives in food has been serious problem for three reasons. Firstly, formalin is not for human beings, but it is for biological specimens and experiments. Formalin in Biology is a 10% solution of formaldehyde in water which is usually used as a disinfectant or to preserve biological specimens. Thus, it is not for food preservatives. Of course when it is used for food preservative, it will be very dangerous to human's body.

The second reason is that there is no tight control from the government. This condition makes the people's health is really in a threat. When the control is weak and the use formalin was spread wide all over the Indonesian regions, and these days it has really happened, the citizen's bodies will be badly contaminated with the poisons. Fish or food traders still sell their products which contain formalin and dangerous preservatives. Can you imagine that our digestive system absorbs the substance that should be for the human and animal corpses?, Considering the reasons, we can make a conclusion that the use of formalin and other.

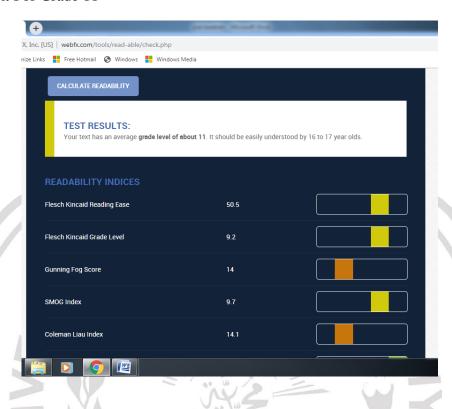
Corruption has happened for many years and today it becomes a bad culture in indonesia for three reasons . most adult indonesian or foreigners have known and admitted that corruptions happen in many places the daily newspapers, news programs on TV and radio have reported corruptions are done everywhere, almost in all departments or public services of this country. Corruption happen in health, education departments and banks. When we manage to get some documents in public service offices, we usually need much money to pay and manipulations happen everywhere.

The actions to eliminate corruption are weak. The ever stronger culture seems not to come to end when the responsibility of institutions who have to reinforce the justice today commit corruption. This is the worst. Corruptions happen in police department, courts where judges, public prosecutors, lawyers make deals to do corruption. All of us also heard in the end of 2004, probpsutejo reported that he had bribed the supreme court, or called mahkamah agung which becomes the highest level where the justice can be obtained. Perhaps you have to try to come to the local courts and see what happen there. You will see pratices of bribery and other kinds of corruption. Therefore, we can say that corruption becomes our culture. do you like it? The citizens have no goodwill to fight against the corruption. They create the situasions in which people have opportunities to do corruptions. The citizens like to break the rules because they are not disciplined. For example, in the street when they drive a car or ride motorcycle, they do not have the driving license or necessary documents. Then they are caught by the local poloceman to avoid more difficulties, they like to bribe the officer. The officer let them go then. In other words, the citizens and officers are the same doing corruption together. If only the people were critical disciplined and obey the rules and willing

to report any wrong behaviours. This country will not be number one of corrupting country in the world.


We can conclude that corruption is becoming a bad culture in indonesia, if it is not ended soon by all of us, it seems that there mus be more severe penalty for the corruptors. Do we stil care about the future of this countryy?.

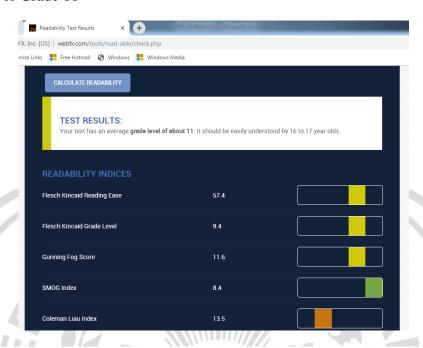
http://typeoftext.blogspot.com/2009/01/analytical-exposition.html



READABILITY DATA

1. Text For Grade 11

In Australia there are three levels of governments, the federal government, state governments and local governments. All of these levels of government are necessary. This is so for number of reasons. First, the federal government is necessary for the big things. They keep the economy in order and look after like defensE. Similarly, the state governments look after the middle sized things. For example they look after law and order, preventing things like vandalism in school. Finally, local government look after the small thins. They look after things like collecting rubbish, otherwise everyone would have diseasE. Thus for the reason above, we can conclude that the three levels of the government are necessary.


There is no best way to deal with pests in agriculture. Pesticides which are commonly used may cause many problems. I think combining different management operations is the most effective way to control pests.

Firstly, the chemicals in the pesticides may build up as residues in the environment and in the soil which absorbs the chemicals. This reduces the quality of farm product.

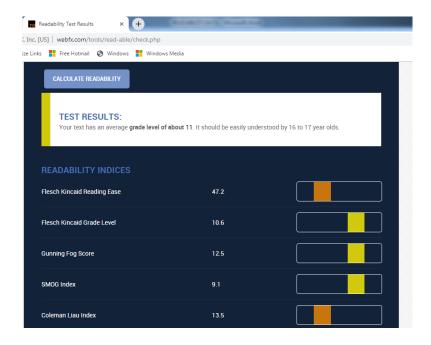
Secondly, pests can gradually become resistant to pesticides. This means that newer and stronger ones have to be developed.

Lastly, some pesticides affect non target plants and animals such as fish and bees. This affects the ecology and environment as well.

So, understanding of ecology of an area helps a lot in pest control. Pesticides should be chosen and applied carefully so that they don't affect the ecological balance and environment. Therefore, integrated pest management is a safe and more effective option to fight pest in agriculture and livestock.

Thousands of macaques are bred or captured from the wild to be used as street performers, or known as "topeng monyet". The macaques are used to perform street shows; wearing funny masks, riding bicycles, performing acrobatic moves and doing amusing things. However, such shows should be banned for few reasons.

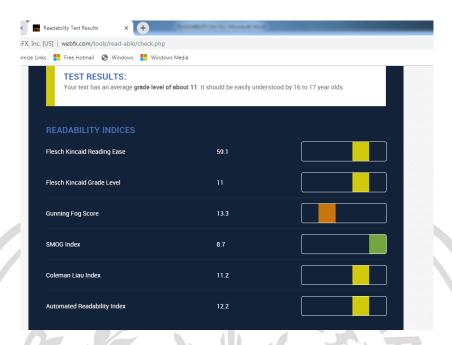
First, topeng monyet is a kind of exploitation of monkeys for money. The monkeys are hung from chains for long periods to train them to walk on their hind legs like humans. Their teeth are extracted so they can't bite and they are tortured to remain obedient. The monkeys are often outfitted in dresses and cowboy hats and forced to carry parasols or ride tiny bikes. This animal abuse will definitely hurt the monkeys.


Second, the ban of masked monkey show can help improve public order. Topeng monyet is often performed when traffic is backed up at notoriously congested intersections. This will disturb the sight and create traffic jams for many motorists or pedestrians will slow down to watch the shows.

Third, banning the dancing monkeys is a necessary public health measure. It is important to rescue the monkeys from street performances and help prevent diseases carried by the monkeys.

The monkeys used in topeng monyet may not be healthy and may have potential to some diseases such as tuberculosis and hepatitis.

Considering the reasons stated above, topeng monyet should be banned for it exploits the monkeys, causes traffic jams and spreads illnesses such as tuberculosis and hepatitis.


https://www.englishcafe.co.id/ujian-nasional-analytical-exposition/

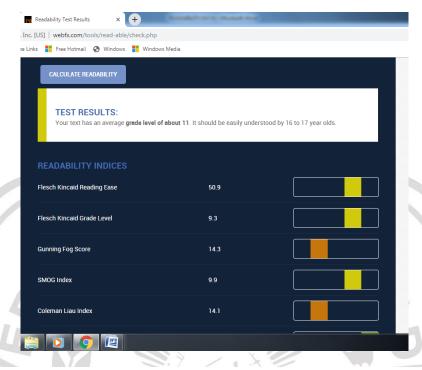
There are many reasons why people become vegetarians, including personal health, the environment, and the economy. A vegetarian is a person who does not eat meat, poultry, and fish. Vegetarians mostly eat fruit, vegetables, legumes, grains, seeds, and nuts. Vegetarians also consume eggs and dairy products, but they avoid meat products, such as beef, chicken stocks, and gelatin. According to research, vegetarians have lower risk of heart disease, high cholesterol, diabetes, obesity, and high blood pressure. This may happen due to a healthy vegetarian diet, which has low fat but high fibre.

However, a vegetarian diet can be high in fat if it includes excessive amounts of fatty snacks, fried food, whole dairy products, and eggs. At the same time, a vegetarian diet can be simple and easy to prepare. Therefore, a vegetarian diet must be well-planned to prevent and treat certain diseases.

https://www.englishcafe.co.id/ujian-nasional-analytical-exposition/

Mentally Ill Person Wander Around Freely On The Street

I personally think that a person with a mental illness that we usually find wandering around our neighborhood aimlessly is not dangerous, but a serious act need to be done on this matter. The following reasons will show you why we need to do something to insane people.


Firstly, people with mental illness who walk around our neighborhood or workplace may look scary beause most of the time they are found in dirty condition and in zombie-like state (having no consciousness), but they rarely endanger the people around them, except they were disturbed first. Placing them in a secure place will minimize the chance of them being disturbed by irresponsible people compare to when we let them wander around on the street freely.

Secondly, loosing their conscious mind does not mean that they have forgotten their basic instinct for food, drinks and self preservation. We can imagine what will happen when they feel hungry or thirsty when they are roaming around on the street. They will cause trouble to the people around them. Keeping them in a special place will prevent this problem. It will bring security for the insane people and also for the society.

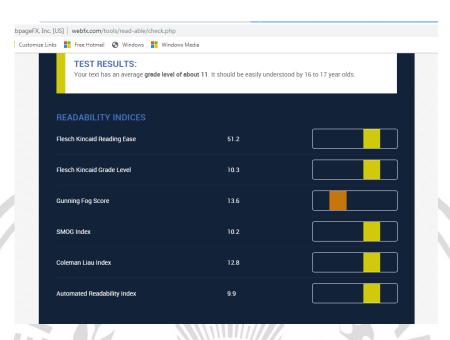
Thirdly, people with mental illness may not have a healthy mind, but they do have a healthy body or at least healthy body parts. Without anyone caring, they are the best target of human trafficking business as no one will notice if they are disappear. That is why we need to protect them by placing them in a secure facility where we can always check on their condition and make sure that they are safe.

Based on the explanations above, it is clear that we need to protect the people with mental illness by placing them in a special and secure facility where we can take care of them and cure them if it is possible.

https://www.bigbanktheories.com/penjelasan-lengkap-analytical-exposition-text-dan-contohnya/

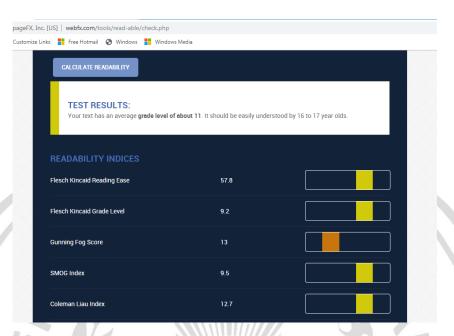
Integrated Pest Management

There is no best way to deal with pests in agriculture. Pesticides which are commonly used may cause many problems. I think combining different management operations is the most effective way to control pests.


Firstly, the chemicals in the pesticides may build up as residues in the environment and in the soil which absorbs the chemicals. This reduces the quality of farm product.

Secondly, pests can gradually become resistant to pesticides. This means that newer and stronger ones have to be developed.

Lastly, some pesticides affect non target plants and animals such as fish and bees. This affects the ecology and environment as well.


So, understanding of ecology of an area helps a lot in pest control. Pesticides should be chosen and applied carefully so that they don't affect the ecological balance and environment. Therefore, integrated pest management is a safe and more effective option to fight pest in agriculture and livestock.

 $\underline{https://englishahkam.blogspot.com/2012/12/teks-analytical-exposition-jawaban.html}$

The use of formalin and other dangerous preservatives in food has been serious problem for three reasons. Firstly, formalin is not for human beings, but it is for biological specimens and experiments. Formalin in Biology is a 10% solution of formaldehyde in water which is usually used as a disinfectant or to preserve biological specimens. Thus, it is not for food preservatives. Of course when it is used for food preservative, it will be very dangerous to human's body.

The second reason is that there is no tight control from the government. This condition makes the people's health is really in a threat. When the control is weak and the use formalin was spread wide all over the Indonesian regions, and these days it has really happened, the citizen's bodies will be badly contaminated with the poisons. Fish or food traders still sell their products which contain formalin and dangerous preservatives. Can you imagine that our digestive system absorbs the substance that should be for the human and animal corpses?, Considering the reasons, we can make a conclusion that the use of formalin and other.

Corruption has happened for many years and today it becomes a bad culture in indonesia for three reasons . most adult indonesian or foreigners have known and admitted that corruptions happen in many places the daily newspapers, news programs on TV and radio have reported corruptions are done everywhere, almost in all departments or public services of this country. Corruption happen in health, education departments and banks. When we manage to get some documents in public service offices, we usually need much money to pay and manipulations happen everywhere.

The actions to eliminate corruption are weak. The ever stronger culture seems not to come to end when the responsibility of institutions who have to reinforce the justice today commit corruption. This is the worst. Corruptions happen in police department, courts where judges, public prosecutors, lawyers make deals to do corruption. All of us also heard in the end of 2004, probpsutejo reported that he had bribed the supreme court, or called mahkamah agung which becomes the highest level where the justice can be obtained. Perhaps you have to try to come to the local courts and see what happen there. You will see pratices of bribery and other kinds of corruption. Therefore, we can say that corruption becomes our culture. do you like it?. The citizens have no goodwill to fight against the corruption. They create the situasions in which people have opportunities to do corruptions. The citizens like to break the rules because they are not disciplined. For example, in the street when they drive a car or ride motorcycle, they do not have the driving license or necessary documents. Then they are caught by the local poloceman to avoid more difficulties, they like to bribe the officer. The officer let them go then. In other words, the citizens and officers are the same doing corruption together. If only the people were critical disciplined and obey the rules and willing

to report any wrong behaviours. This country will not be number one of corrupting country in the world.

We can conclude that corruption is becoming a bad culture in indonesia, if it is not ended soon by all of us, it seems that there mus be more severe penalty for the corruptors. Do we stil care about the future of this countryy?.

http://typeoftext.blogspot.com/2009/01/analytical-exposition.html

RELIABILITY

Case Processing Summary

			- ,
	-	N	%
Cases	Valid	22	100.0
	Excludeda	0	.0
	Total	22	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's	
Alpha	N of Items
.950	25

Item-Total Statistics

-		item-Total Statis		
				Cronbach's
	Scale Mean if	Scale Variance if		Alpha if Item
	Item Deleted	Item Deleted	Total Correlation	Deleted
VAR00001	16.5000	55.500	.794	.946
VAR00002	16.5000	55.405	.807	.946
VAR00003	16.3182	57.370	.639	.948
VAR00004	16.3636	58.052	.496	.949
VAR00005	16.3182	58.323	.488	.949
VAR00006	16.5000	55.500	.794	.946
VAR00007	16.5000	55.405	.807	.946
VAR00009	16.5000	55.500	.794	.946
VAR00010	16.5000	54.738	.902	.944
VAR00011	16.5000	55.595	.780	.946
VAR00012	16.5000	57.024	.583	.948
VAR00013	16.5000	54.738	.902	.944
VAR00015	16.3182	57.370	.639	.948
VAR00016	16.3182	57.370	.639	.948
VAR00020	16.3182	60.799	.108	.953
VAR00021	16.3182	59.370	.325	.951
VAR00022	16.5455	55.879	.731	.947
VAR00023	16.3182	59.465	.311	.951
VAR00024	16.5000	55.500	.794	.946
VAR00025	16.3182	59.370	.325	.951
VAR00026	16.4545	54.926	.896	.945
VAR00027	16.3182	59.370	.325	.951
VAR00028	16.3182	57.370	.639	.948
VAR00029	16.3182	57.370	.639	.948
VAR00030	16.3182	57.370	.639	.948

Answer Key for Pre-test and Post-test

1. D	11. B	21. C
2. A	12. A	22. D
3. D	13. A	23. B
4. C	14. B	24. B
5. B	15. D	25.C
6. D	16. B	
7. B	17. D	4/10
8. A	18. A	
9. D	19. A	
10. B	20. C	
11 2 1	11/12	
11 3		12 4 11
/// ×		- × //
	GRESI	K //
	WES.	

APPENDIX 11
TABLE SCORE OF PRE AND POST TEST

The Table of Scoring Pre-Test and Post-test

Score of	Pre-Test	Score of Post-test			
Control Group (IPA 2)	Experimental Group (IPA 3)	Control Group (IPA 2)	Experimental Group (IPA 3)		
90	63	68	57		
79	52	74	57		
79	36	74	63		
63	42	79	57		
79	42	74	63		
79	47	79	63		
79	52	84	84		
58	47	68	84		
79	73	68	63		
79	68	27	57		
58	35	58	63		
90 35		63	84		
74 52		63	84		
95 58		63	79		
90 52		74	84		
88	63	74	57		
88	52	74	63		
79	45	58	68		
79	52	63	84		
95	52	8	84		
90	58	12	84		
90	58	8	84		
95	36	63 84			
95	45	31	80		
74	63	31	57		
63	52	52	80		
68	36	68	84		
68	36	68	42		
74	68	68	42		
68	58	68	42		

T-TEST GROUPS=group(1 2)
/MISSING=ANALYSIS
/VARIABLES=nilai

/CRITERIA=CI(.9500).

T-Test

Notes

	Notes	
Output Created		02-Oct-2019 18:40:14
Comments		
Input	Data	J:\bara\pre test.sav
	Active Dataset	DataSet1
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in Working Data File	60
Missing Value Handling	Definition of Missing	User defined missing values are treated as missing.
Syntax	Cases Used	Statistics for each analysis are based on the cases with no missing or out-of-range data for any variable in the analysis. T-TEST GROUPS=group(1 2)
		/MISSING=ANALYSIS /VARIABLES=nilai /CRITERIA=CI(.9500).

Resources	Processor Time	00:00:00.016
	Elapsed Time	00:00:00.017

[DataSet1] J:\bara\pre test.sav

Group Statistics

	group	N	Mean	Std. Deviation	Std. Error Mean	
nilai	1	30	48.8000	14.90290	2.72089	
	2	30	77.2000	13.89468	2.53681	

Independent Samples Test

	masponaem campios rost									
Levene's Test for Equality of Variances			t-test for Equality of Means							
								0.1 5	95% Confidence Interval o	
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upp
nilai	Equal variances assumed	.002	-	-7.634	58	-	-28.40000	3.72003	-35.84645	
	Equal variances not assumed			-7.634	57.718	.000	-28.40000	3.72003	-35.84722	-2

APPENDIX 13

EXAMINE VARIABLES=nilai BY group
/PLOT BOXPLOT HISTOGRAM NPPLOT
/COMPARE GROUP
/STATISTICS DESCRIPTIVES
/CINTERVAL 95
/MISSING LISTWISE

/NOTOTAL.

Explore

Notes

Output Created		02-Oct-2019 18:45:08						
Comments								
Input	Data	J:\bara\pre test.sav						
	Active Dataset	DataSet1						
	Filter	<none></none>						
	Weight	<none></none>						
	Split File	<none></none>						
	N of Rows in Working Data File	60						
Missing Value Handling	Definition of Missing	User-defined missing values for dependent						
		variables are treated as missing.						
	Cases Used	Statistics are based on cases with no						
		missing values for any dependent variable						
		or factor used.						

Syntax		EXAMINE VARIABLES=nilai E /PLOT BOXPLOT HISTOGR /COMPARE GROUP /STATISTICS DESCRIPTIVE /CINTERVAL 95 /MISSING LISTWISE	AM NPPLOT
Resources	Processor Time	/NOTOTAL.	00:00:01.186
	Elapsed Time		00:00:01.139

[DataSet1] J:\bara\pre test.sav

group

Case Processing Summary

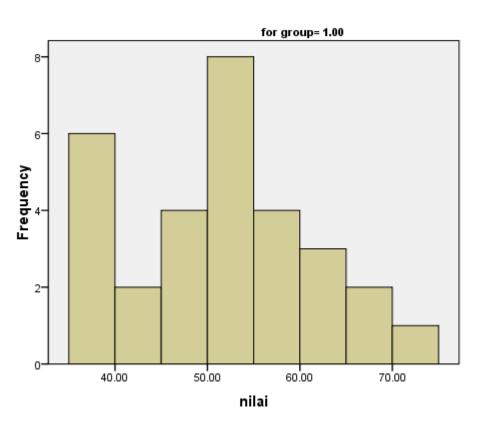
	-	Cases												
		Va	lid	Mis	sing	Total								
	group	N	Percent	N	Percent	N	Percent							
nilai	1	30	100.0%	0	.0%	30	100.0%							
	2	30	100.0%	0	.0%	30	100.0%							

Descriptives

	group		Statistic	Std. Error
nilai	1	Mean	50.9333	1.96985

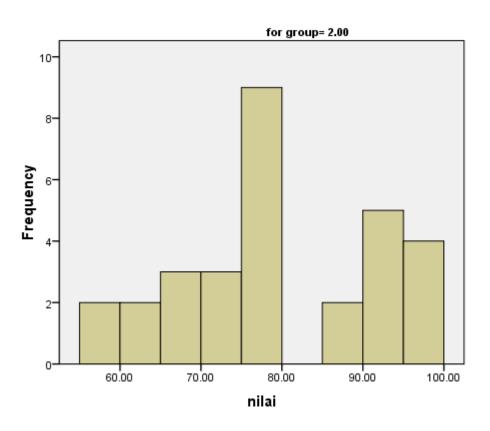
	<u>—</u>									
	95% Confidence Interval for	Lower Bound		46.9045						
	Mean	Upper Bound		54.9621						
	5% Trimmed Mean			50.6852						
	Median			52.0000						
	Variance			116.409						
	Std. Deviation			1.07893E1						
	Minimum	Minimum								
	Maximum	73.00								
	Range			38.00						
	Interquartile Range		16.00							
	Skewness	.118	.427							
	Kurtosis	758	.833							
2	Mean			79.5000	2.03856					
	95% Confidence Interval for	Lower Bound		75.3307						
	Mean	Upper Bound		83.6693						
	5% Trimmed Mean			79.8333						
	Median			79.0000						
	Variance			124.672						
	Std. Deviation			1.11657E1						
	Minimum			58.00						
	Maximum			95.00						
		37.00								
	Range			! !						
	Range Interquartile Range			17.50						

Tests of Normality


	<u>-</u>	Koln	nogorov-Smirr	10V ^a	Shapiro-Wilk								
	group	Statistic	df	Sig.	Statistic	df	Sig.						
nilai	1	.139	30	.142	.946	30	.130						
	2	.151	30	.142	.926	30	.039						

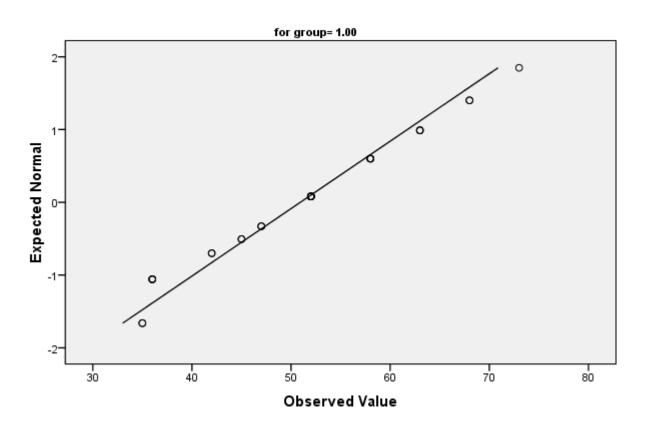
a. Lilliefors Significance Correction

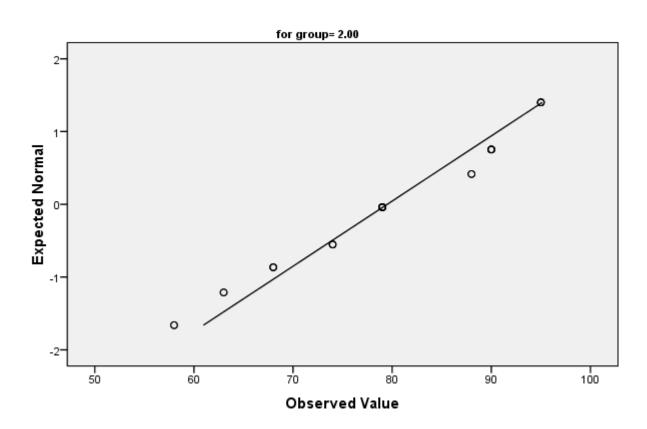
nilai


Histograms

Histogram

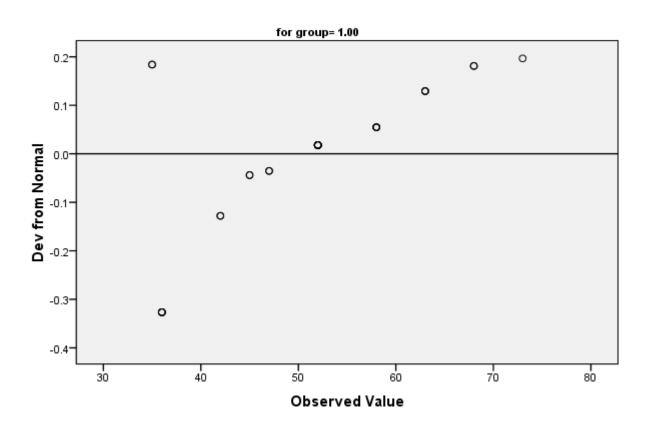
Mean =50.93 Std. Dev. =10.789 N =30


Histogram

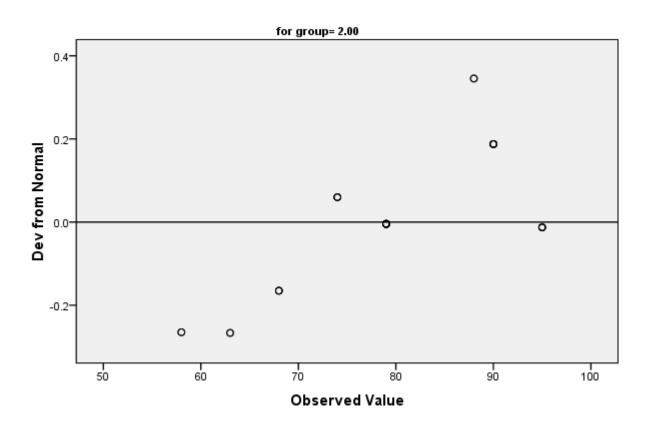

Mean =79.50 Std. Dev. =11.166 N =30

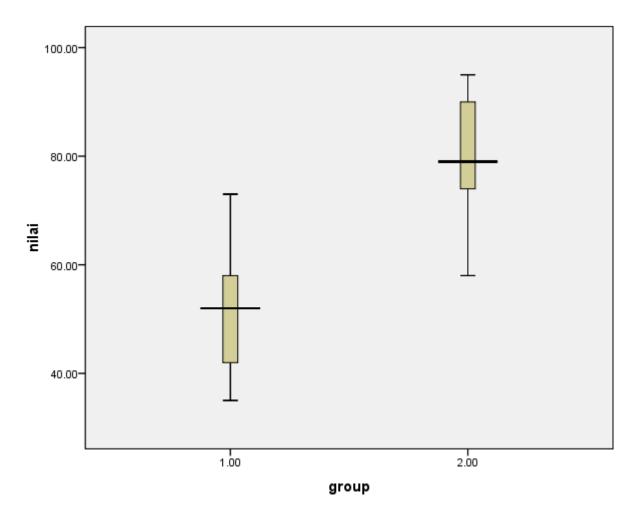
Normal Q-Q Plots

Normal Q-Q Plot of nilai



Normal Q-Q Plot of nilai




Detrended Normal Q-Q Plots

Detrended Normal Q-Q Plot of nilai

Detrended Normal Q-Q Plot of nilai

APPENDIX 14 HYPOTHESIS TESTING

T-TEST GROUPS=group(1 2)
/MISSING=ANALYSIS
/VARIABLES=nilai

/CRITERIA=CI(.9500).

T-Test

Notes

Output Created		19-Oct-2019 15:45:08					
Comments							
Input	Active Dataset	DataSet0					
	Filter	<none></none>					
	Weight	<none></none>					
	Split File	<none></none>					
	N of Rows in Working Data File	60					
Missing Value Handling	Definition of Missing	User defined missing values are treated as					
		missing.					
	Cases Used	Statistics for each analysis are based on the					
		cases with no missing or out-of-range data					
		for any variable in the analysis.					
Syntax		T-TEST GROUPS=group(1 2)					
		/MISSING=ANALYSIS					
		/VARIABLES=nilai					
		/CRITERIA=CI(.9500).					
Resources	Processor Time	00:00:00.031					

Notes

Output Created		19-Oct-2019 15:45:08
Comments		
Input	Active Dataset	DataSet0
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in Working Data File	60
Missing Value Handling	Definition of Missing	User defined missing values are treated as missing.
	Cases Used	Statistics for each analysis are based on the cases with no missing or out-of-range data for any variable in the analysis.
Syntax		T-TEST GROUPS=group(1 2) /MISSING=ANALYSIS /VARIABLES=nilai /CRITERIA=CI(.9500).
Resources	Processor Time	00:00:00.031
	Elapsed Time	00:00:00.029

[DataSet0]

Group Statistics

	group	N	Mean	Std. Deviation	Std. Error Mean					
nilai	1	30	69.2333	14.48348	2.64431					
	2	30	58.7333	21.55496	3.93538					

Independent Samples Test

		Levene's Test for E	quality of Variances		t-test for Equality of Means												
								044 5	95% Confidence	e Interval o							
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upp							
nilai	Equal variances assumed	1.448	.234	2.215	58	.031	10.50000	4.74126	1.00933	1							
	Equal variances not assumed			2.215	50.752	.031	10.50000	4.74126	.98039	2							

APPENDIX 5 CONSTRUCT VALIDITY

Correlation

															Correl	VAR00015												VAR00027	VAR00028			
VAR00001	Pearson Correlation Sig. (2-tailed)	VAR00001	VAR00002 .812"	VAR00003	.321	VAR00005	VAR00006	VAR00007 .812"	231	.812"	.812"	.812"	.624	VAR00013 .812"	010	.431	.431	231	171	231	010	010	/AR00022 .726"	VAR00023	1.000	010	VAR00026 .909"	010	.431"	.431°	.431"	JUMLAH .466
14500000	N	22	.000 22	.045 22	.145 22	.347 22	.000	.000 22	.302 22	.000	.000	.000	.002	.000	.965 22	.045 22	.045	.302 22	.446 22	.302 22	.965 22	.965 22	.000	347 22	.000	.965 22	.000	.965 22	.045	.045	.045	.029
VAR(00002	Pearson Correlation Sig. (2-tailed) N	.812" .000 22	1 22	.431° .045 22	.321 .145 22	.211 .347 22	.812" .000 22	1.000" .000 22	-231 .302 22	.812" .000 22	.812" .000 22	.812" .000 22	.624" .002 22	.812" .000 22	010 .965 22	.431' .045 22	.431° .045 22	010 .965 22	171 .446 .22	-231 .302 22	.211 .347 22	010 .965	.726" .000	211 347 22	.812" .000 22	010 .965 22	.909" .000 22	010 .965 22	.431° .045 22	.431° .045	.431° .045 22	.518
VAR00003	Pearson Correlation Sig. (2-tailed)	.431° .045	.431° .045	1	.886° .000	.224 .317	.431° .045	.431° .045	294 .184	.431° .045	.652" .001	.431° .045	.431° .045	.652 ^{**}	294 .184	224 317	.224 .317	035 .876	138 .541	035 .876	035 .876	.482° .023	.376 .084	224 317	.431° .045	.482° .023	.492° .020	.482° .023	.224 .317	1.000°° .000	.224 .317	.365 .095
VAR00004	N Pearson Correlation Sig. (2-tailed)	.321 .145	.321 .145	.886" .000	1	.155 .491	.321 .145	.321 .145	-332 -131	.321 .145	.528° .011	.321 .145	.321 .145	.528° .011	332 .131	.155 .491	.155 .491	.155 .491	199 .374	.155 .491	089 .695	.399 .066	.261 .241	.155 .491	.321 .145	.399 .066	.386 .076	.399 .066	.155 .491	.886° .000	.155 .491	.343 .118
VAR00005	N Pearson Correlation	.21	.211	22 224	.155	22	22 .211	22	-294	.211	.431°	211	010	.431	035	.741"	.741 ⁻	035	.095	-294	22 224	.482°	.158	22 224	.211	.482°	.266	22 .482'	.741°	.224	.741"	.426°
VAR00006	Sig. (2-tailed) N Pearson Correlation	.347 22 .812"	.347 22 .812"	.317 22 .431	.491 22 .321	22	.347 22	.347 22 .812"	.184 22 -231	.347 22 1,000"	.045 22 .812"	.347 22 .812"	.965 22 .624 ⁺	.045 22 .812"	.876 22 010	.000 22 .431	.000 22 .431	.876 22 231	.673 22 370	.184 22 -231	.317 22 010	.023 22 010	.481 22 .726"	317 22 211	.347 22 .812	.023 22 010	.231 22 .909"	.023 22 010	.000 22 .431	.317 22 .431	.000 22 .431	.048 22 .363
	Sig. (2-tailed) N	.000 22	.000 22	.045 22	.145 22	.347 22	22	.000 22	302 22	.000 22	.000 22	.000 22	.002 22	.000 22	.965 22	.045 22	.045 22	.302 22	.090 22	.302 22	.965 22	.965 22	.000 22	347 22	.000 22	.965 22	.000 22	.965 22	.045 22	.045 22	.045 22	.097 22
	Pearson Correlation Sig. (2-tailed) N	.812" .000 22	1.000" .000 22	.431° .045 22	.321 .145 22	.211 .347 22	.812" .000 22	22	-231 .302 22	.812" .000 22	.812" .000 22	.812" .000 22	.624" .002 22	.812" .000 22	010 .965 22	.431° .045 .22	.431° .045 22	010 .965 22	171 .446 22	-231 302 22	.211 .347 .22	010 .965 22	.726" .000 22	211 347 22	.812 .000 22	010 .965 22	.909" .000 22	-,010 ,965 22	.431° .045 22	.431° .045 22	.431° .045 22	.518° .013 22
VAR00008	Pearson Correlation Sig. (2-tailed) N	231 .302 22	231 .302 22	-294 .184 .22	-332 .131 22	294 .184 22	-231 .302 22	-231 302 22	1 22	231 .302 22	231 .302 22	-231 302 22	231 .302 22	231 .302 22	035 .876 22	-294 .184 22	294 .184 .22	294 .184 22	138 .541 22	035 .876 22	294 .184 22	294 .184 .22	059 .793	-294 -184 -22	231 .302 22	294 .184 22	184 .411 22	-294 .184 22	294 .184 22	294 .184 22	294 .184 .22	608" .003 22
VAR00009	Pearson Correlation Sig. (2-tailed) N	.812 ^{**}	.812" .000	.431° .045	.321	.211 .347	1.000"	.812" .000	-231 .302	1	.812" .000	.812" .000	.624 ⁻	.812 ^{**}	010 .965	.431° .045	.431° .045	231 .302	370 .090	-231 .302	010 .965	010 .965	.726" .000	211 .347	.812 ⁻	-,010 .965	.909" .000	010 .965	.431° .045	.431° .045	.431° .045	.363 .097
VAR00010	Pearson Correlation Sig. (2-tailed)	.812" .000	.812" .000	.652" .001	.528° .011	.431° .045	.812" .000	.000	-231 .302	.812" .000	1	812" ,000	.624 ⁻ .002	1.000" .000	010 .965	431 .045	.431° .045	231 .302	370 .090	-231 -302	-,010 .965	.211 .347	.726" .000	22 .431' .045	812 ⁻ .000	.211 .347	.909" .000	22 211 347	.431° .045	.652" .001	.045	.518° .013
VAR00011	N Pearson Correlation Sig. (2-tailed)	.812" .000	.812" .000	.431° .045	.321 .145	.21 .211 .347	.812" .000	812" .000	-231 -302	.812" .000	.812" .000	1	.624 ⁻ .002	.812" .000	22 211 .347	.431° .045	.431° .045	231 302	171 .446	-231 -302	010 .965	010 .965	.726" .000	22 211 347	.000	010 .965	.909" .000	-,010 -,965	.431° .045	.431° .045	.431° .045	.518° .013
VAR00012	N Pearson Correlation Sig. (2-tailed)	.624" .002	.624" .002	431° .045	.321 .145	010 965	.624" .002	624" 002	-231 -302	.624" .002	.624" .002	.624" .002	22	.624" .002	010 965	22 211 347	22 211 347	010 .965	171 .446	010 .965	010 .965	010 .965	.540" .009	22 211 347	.624 ⁻ .002	010 .965	.716" .000	010 .965	22 .211 .347	.431° .045	22 211 347	.363 .097
VAR00013	N Pearson Correlation	.812"	.812"	.652"	.528	.431°	.812"	22 .812"	-22 -231	.812 ^{**}	1.000"	.812"	22 .624	22	010	22 .431	.431"	231	370	-231	010	.211	.726"	.431°	.812	.211	.909"	22	.431°	.652"	.431°	.518°
VAR00014	Sig. (2-tailed) N Pearson Correlation	.000 22 010	.000 22 010	.001 22 -294	.011 22 332	.045 22 035	.000 22 010	.000 22 010	.302 22 035	.000 22 010	.000 22 010	22 211	.002 22 010	22	.965 22	.045 22 035	.045 22 035	.302 22 035	.090 22 .095	.302 22 -294	.965 22 .224	.347 22 294	.000 22 .158	.045 22 035	.000 22 010	.347 22 294	.000 22 .041	.347 22 -294	.045 22 035	.001 22 294	.045 22 035	.013 22 .243
VADODO16	Sig. (2-tailed) N Pearson Correlation	.965	.965 22	.184	.131	.876 22 .741"	.965 22	.965 22	.876 22	.965	.965 22	347 22	.965	.965 22	22	.876 22	.876 22	.876 22	.673 22	.184	.317 22	.184	.481	.876 22	.965 22	.184	.856 22	.184	.876 22	.184 22	.876 22	.275 22
	Sig. (2-tailed) N	.431° .045 22	.431° .045 22	224 317 22	.155 .491 .22	.000 22	.431° .045 22	.045 .045 .22	-294 .184 22	.431° .045 22	.431° .045 22	.431° .045 .22	.211 .347 22	.431° .045 22	035 .876 .22	22	1.000° .000 22	035 .876 22	.095 .673 22	-294 .184 .22	.023 22	.224 .317 .22	.376 .084 22	-035 .876 .22	.045 .022	.224 .317 22	.492° .020 .22	224 317 22	1,000" ,000 22	.224 .317 22	1,000" .000 22	.048 .022
VAR00016	Pearson Correlation Sig. (2-tailed) N	.431° .045 22	.431° .045 22	224 317 22	.155 .491 .22	.741" .000 22	.431° .045 22	.431° .045 .22	-294 .184 22	.431° .045 22	.431° .045 .22	.431° .045 .22	.211 .347 .22	.431° .045 22	035 .876 22	1,000" ,000 22	22	035 .876 22	.095 .673 22	-294 .184 22	.482° .023 22	.224 .317 22	.376 .084 22	-035 .876 22	.431° .045 22	.224 .317 22	.492° .020 22	224 317 22	1.000 .000 22	.224	1.000" .000 22	.048 .022
VAR00017	Pearson Correlation Sig. (2-tailed) N	231 .302 22	010 .965 22	035 876 22	.155 .491	035 .876 22	231 .302 22	010 .965 22	-294 .184 22	231 .302 22	231 .302 22	-231 302 22	010 .965 22	231 .302 22	035 .876 22	-,035 .876 .22	035 .876 22	1 22	.095 .673 22	035 .876 .22	.482° .023 22	.224 .317 22	-277 212 22	035 .876 .22	231 .302 22	.224 .317	184 .411 22	224 317 22	035 .876 22	035 .876 22	035 .876 22	243 275 22
VAR00018	Pearson Correlation Sig. (2-tailed)	171 .446 22	171 .446 .22	138 .541 .22	199 .374 22	.095 .673 22	370 .090 22	171 .446	138 .541 22	370 .090 22	370 .090 22	171 .446 22	171 .446 22	-,370 .090 22	.095 .673	.095 .673 22	.095 .673 22	.095 .673 22	1 22	138 .541 22	.095 .673 22	.095 .673 22	-232 .300 22	-370 .090 22	171 .446 22	.095 .673 22	314 .155 22	.095 .673 22	.095 .673 22	138 .541 22	.095 .673 22	.109 .628
VAR00019	Pearson Correlation Sig. (2-tailed)	231 .302	231 .302	035 .876	.155 .491	294 .184	231 .302	-231 .302	035 .876	231 .302	231 .302	-231 .302	010 .965	231 .302	294 .184	-294 .184	-294 .184	035 .876	138 .541	1	294 .184	035 .876	059 .793	035 .876	231 .302	035 .876	184 .411	035 .876	294 .184	035 .876	294 .184	.000 1.000
VAR00020	N Pearson Correlation Sig. (2-tailed)	010 .965	.211 .347	035 .876	089 .695	.224 .317	010 .965	22 211 347	-294 -184	010 .965	010 .965	010 .965	010 965	-,010 .965	22 224 317	482° .023	.482° .023	.482° .023	.095 .673	-294 -184	1	035 .876	059 .793	-294 -184	010 .965	035 .876	.041 .856	-,035 .876	.482° .023	035 .876	.482° .023	.304 .169
VAR00021	N Pearson Correlation Sig. (2-tailed)	010 965	010 .965	22 482 ,023	399 .066	.023	010 965	010 .965	-294 -184	010 .965	22 .211 .347	010 .965	010 965	.211 .347	-294 -184	22 224 317	22 224 317	22 224 .317	.095 .673	-,035 .876	035 .876	1	.158 .481	.023 .023	010 .965	1.000° .000	.041 .856	1,000" ,000	22 .224 .317	.482° .023	22 224 .317	.365 .095
VAR00022	N Pearson Correlation	.726"	.726"	22 .376	.261	.158	.726"	.726"	059	.726"	.726"	.726"	.540°	.726"	.158	22 .376	22 .376	277	232	059	059	.158	22	22 376	.726"	.158	.828"	.158	.376	.376	.376	.563"
VAR00023	Sig. (2-tailed) N Pearson Correlation	.000 22 .211	.000 22 .211	.084 22 224	.155	.481 22 .224	.000 22 .211	22 211	.793 22 -294	.000 22 .211	.000 22 .431	22 211	.009 22 .211	.000 22 .431	.481 22 035	084 22 035	.084 22 035	.212 22 035	.300 22 370	.793 22 035	.793 22 294	.481 22 .482	22 .376	.084 22 1	.000 22 .211	.481 22 .482	.000 22 .266	481 22 482	.084 22 035	.084 22 .224	.084 22 035	.006 22 .304
VAR00024	Sig. (2-tailed) N Pearson Correlation	.347 22 1.000"	.347 22 .812"	317 22 431	.491 22 .321	.317 22 .211	.347 22 .812"	.347 22 .812"	.184 22 -231	.347 22 .812"	.045 22 .812"	.347 22 .812"	.347 22 .624	.045 22 .812"	.876 22 010	.876 22 .431	.876 22 .431	.876 22 231	.090 22 171	.876 22 231	.184 22 010	.023 22 010	.084 22 .726"	22 211	.347 22 1	.023 22 010	.231 22 .909"	.023 22 010	.876 22 .431	.317 22 .431	.876 22 .431	.169 22 .466
	Sig. (2-tailed) N Pearson Correlation	.000 22	.000 22	.045 22	.145 22	.347 22	.000 22	.000 22	.302 22	.000 22	.000 22	.000 22	.002 22	.000 22	.965 22	.045 22	.045 22	.302 22	.446 22	.302 22	.965 22	.965 22	.000 22	347 22	22	.965	.000 22	.965 22	.045 22	.045 22	.045 22	.029 22
	Sig. (2-tailed) N	010 .965 22	010 .965 22	.482° .023 .22	.399 .066 22	.482° .023 22	010 .965 22	010 .965	294 .184 .22	010 .965 22	.211 .347 .22	010 .965 .22	010 .965 22	.211 .347 22	294 .184 .22	224 317 22	.224 .317 22	.224 .317 22	.095 .673 22	035 .876 .22	035 .876 22	1.000" .000 22	.158 .481 .22	.482° .023 .22	010 .965 22	22	.041 .856 22	1.000" .000 22	.224 .317 .22	.482° .023 22	.224 .317 .22	.365 .095 22
	Pearson Correlation Sig. (2-tailed) N	.909" .000 22	.909" .000 22	.020 .020 .020	.386 .076 22	.266 .231 22	.909" .000 22	.909" .000 22	184 .411 .22	.909" .000 22	.909" .000 22	.909" .000 22	.716 ⁻ .000 22	.909" .000	.041 .856 22	.492° .020 22	.492° .020 22	184 .411 22	314 .155 22	184 .411 22	.041 .856 22	.041 .856 22	.828" .000 22	266 231 22	.909" .000 22	.041 .856 22	1 22	.041 .856 22	.492° .020 22	.492° .020 22	.492° .020 22	.530° .011 22
VAR00027	Pearson Correlation Sig. (2-tailed) N	010 .965 22	010 .965 22	.482° .023 .22	.399 .066 22	.482° .023 .22	010 .965 22	010 .965 22	294 .184 .22	010 .965 22	211 .347 .22	010 .965 22	010 .965 22	.211 .347	-294 .184 22	224 317 22	.224 .317 22	.224 .317 22	.095 .673 22	035 .876 .22	035 .876 .22	1.000" .000	.158 .481 .22	.482° .023 .22	-,010 .965 22	1.000" .000	.041 .856	1 22	.224 .317 .22	.482° .023	.224 .317 .22	.365 .095 .22
	Pearson Correlation Sig. (2-tailed)	.431° .045	.431° .045	224 317	.155 .491	.741" .000	.431° .045	.431° .045	294 .184	.431° .045	.431° .045	.431' .045	.211 .347	.431° .045	035 .876	1.000"	1.000	035 .876	.095 .673	-294 .184	.482° .023	.224	.376 .084	035 .876	.431° .045	.224 .317	.492° .020	224 317	1	.224 .317	1.000"	.426° .048
	N Pearson Correlation Sig. (2-tailed)	.431° .045	.431° .045	1,000" ,000	.886 ⁻ .000	.224 .317	.431° .045	.431° .045	-294 -184	.431° .045	.652" .001	22 431 .045	.431° .045	.652" .001	-294 -184	22 224 317	.224 .317	035 .876	138 .541	035 .876	035 .876	.023	.376 .084	22 224 317	.431° .045	.482° .023	.492° .020	.482° .023	.224 .317	1	22 224 .317	.365 .095
VAR00030	N Pearson Correlation Sig. (2-tailed)	.431° .045	.431 .045	22 224 317	.155 .491	.741" .000	.045	22 .431 .045	-294 -184	.431° .045	.431° .045	22 431 .045	22 211 347	.431° .045	035 .876	1,000" ,000	1.000 ⁻	035 .876	.095 .673	-294 -184	.023	.224 .317	.376 .084	035 .876	.431° .045	.224 .317	.020	22 224 317	1.000 ⁻	.224 .317	1	.048
JUMLAH	N Pearson Correlation	.466°	.518°	22 .365	.343	.426°	.363	.518°	608"	.363	.518°	.518°	.363	.518°	22 243	22 426	22 .426	.243	.109	.000	.304	.365	.563"	22 .304	.466	.365	.530°	22 .365	.426°	.365	.426°	22
	Sig. (2-tailed) N tion is significant at the	.029 22	.013 22	.095 22	.118 22	.048	.097 22	.013 22	.003 22	.097	.013 22	.013 22	.097 22	.013 22	275 22	.048 22	.048 22	.275 22	.628 22	1,000	.169 22	.095	.006 22	.169 22	.029 22	.095 22	.011 22	.095 22	.048 22	.095 22	.048 22	22

^{**.} Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

G. Langkah-Langkah Pembelajaran First Meeting of Experimental

	Activities			
Phase	Teacher	Student	Time Allotment	Indicator
Pre – Teaching	- Teacher explain the purpose, generic structure, tenses also show the example text of analytical	- Students listen and interact with the teacher.	20 minutes	
Observing •	exposition. - Teacher explain what is PORPE, before moving to the next task.	- Students listen and interact with the teacher.	5 minutes	
Whilst – Teaching	- Teacher guiding students to the step one, it is predict. In this step the teacher ask the students to	- Students start to make minimally 2 questions using keyword "explain, discuss,	20 minutes	4.8.1 Memprediksi makna secara kontekstual terkait fungsi sosial, struktur teks, dan
Questioning	make minimally 2 predicted questions using keyword "explain, discuss, contrast, compare, critisize" based on text who shared by the teacher.	contrast, compare, critisize" based on text who shared by the teacher.	APDIY	unsur kebahasaan teks analytical exposition lisan dan tulis, terkait yang tercakup dalam mata pelajaran lain di kelas XI.
	- Teacher guiding students to the step two, it is organize. In this step, teacher ask students to summarize the text that cover generic stucture.	- Students start to summarize the text that cover generic structure based on the same text.	20 minutes	4.8.2 Menyusun makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan teks analytical exposition lisan dan tulis, yang tercakup dalam mata pelajaran lain di kelas XI
Experimenting	- Teacher guiding students to the thrid step, it is rehearse. in this step, teacher ask the students to recite aloud what they had summarize before.	- Students recite aloud the text that they had summarized before.	5 minutes	4.8.3 Memberitahu makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan teks analytical exposition lisan dan tulis, terkait yang tercakup dalam mata pelajaran lain di kelas XI

	- Teacher guiding students - Students write down 10 minut	es 4.8.4 Menulis
Associating	to the fourth step, it is practice. In this step, teacher ask students to write down the answer of their predicted questions.	makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan teks analytical exposition lisan dan tulis, yang tercakup dalam mata pelajaran lain di kelas XI
Communicating	- Teacher guiding students to fifth step, it is evaluate. In this step, teacher ask students to evaluate theirselves by checklist that provide by the researcher. 5 minute theirselves by checklist provided by the researcher.	4.8.5 Mengevaluasi makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan teks analytical exposition lisan dan tulis, yang tercakup dalam mata pelajaran lain di kelas XI
Post - Teaching	- Teacher reviewing the understanding of the subject by asking the student. - Students listen and give the respond.	es

LIST OF APPENDICES

Appendix 1 Schedule of Implementation

Appendix 2 Syllabus

Appendix 3 Lesson Plan for Experimental Group

Appendix 4 Lesson Plan for Control Group

Appendix 5 Construct Validity

Appendix 6 Readability

Appendix 7 Reliability

Appendix 8 Pre-test Exercise Control and Experimental Class

Appendix 9 Post-test Excercise Control and Experimental Class

Appendix 10 Answer key of Pre-test and Post-test

Appendix 11 The score of Pre-test and Post test of Experimental and control class

Appendix 12 Homogenity test

Appendix 13 Normality distribution

Appendix 14 The Result of Hypothesis Testing

G. Langkah- Langkah Pembelajaran

First Meeting Of Control Group

- N	Activities			
Phase	Teacher	students	Time allotme nt	Indicator
Pre-Teaching	- Teacher explain analyical exposition (generic structure, purpose, tense) [detail: 20 minutes]	- Students listen and respond [detail: 20 minutes]	20 minutes	
	- Teacher explain REAP strategy [detail: 5 minutes]	- Students listen and respond [detail: 5 minutes]	5 minutes	
	SYASIN	UHA		
Whilst-Teaching Observing	- Teacher asks students to do step one of REAP. Teacher ask students to read. [detail: 1 minute]	- students read the text [detail: 14 minutes]	15 minutes	4.8.1 Mengetahui makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan analytical exposition lisan dan tulis, terkait yang tercakup dalam mata pelajaran lain di kelas XI
	SRE	SIT		
Questioning	- Teacher asks students to move to the second step, it is encode. In this step, teacher ask students to write main idea of the text and difficult words. [detail: 1 minute]	- students write down to main idea and difficult words [detail: 9 minutes]	10 minutes	4.8.2 Mengidentifikasi makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan analytical exposition lisan dan tulis, terkait yang tercakup dalam mata pelajaran lain di kelas

		<u> </u>		VI
Associating	- Teacher ask students to the next step, that is Annotating. In this step, the students ask them to write down the message of the text. [detail: 1 minute]	- students write down the message of the text [detail:9 minutes]	10 minutes	4.8.3 Mengulas (review) makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan analytical exposition lisan dan tulis, terkait yang tercakup dalam mata pelajaran lain di kelas XI
communicating	- Teacher ask students to move to the last step that is pondering. In this step, students asked to share by demonstrated with their chairmatte related about the result that they got from every step. [detail: 1 minute]	-students demonstrate what they have got from before steps while discussing and sharing with their chairmate [detail: 9 minutes]	10 minutes	4.8.4 Mendemonstrasikan Mengetahui makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan analytical exposition lisan dan tulis, terkait yang tercakup dalam mata pelajaran lain di kelas XI
Post-Teaching	- Teacher gives the exercise to students by share the worksheet. [detail:1 minute]	that exercise [detail: 19	20 minutes	

APPENDIX 4 LESSON PLAN FOR CONTROL CLASS

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

Sekolah : SMA NU 2 Gresik Mata Pelajaran : Bahasa Inggris Kelas/Semester : XI/Genap

Materi Pokok : Teks Analytical Exposition

Alokasi Waktu : 4 Minggu x 2 Jam Pelajaran @45 Menit

A. Kompetensi Inti

- KI-1 dan KI-2: Menghayati dan mengamalkan ajaran agama yang dianutnya. Menghayati dan mengamalkan perilaku jujur, disiplin, santun, peduli (gotong royong, kerjasama, toleran, damai), bertanggung jawab, responsif, dan pro-aktif dalam berinteraksi secara efektif sesuai dengan perkembangan anak di lingkungan, keluarga, sekolah, masyarakat dan lingkungan alam sekitar, bangsa, negara, kawasan regional, dan kawasan internasional".
- KI 3: Memahami, menerapkan, dan menganalisis pengetahuan faktual, konseptual, prosedural, dan metakognitif berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah
- **KI4:** Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, bertindak secara efektif dan kreatif, serta mampu menggunakan metode sesuai kaidah keilmuan

B. Kompetensi Dasar dan Indikator Pencapaian Kompetensi

Kompetensi Dasar	Indikator
4.8 Menangkap makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan teks analytical exposition lisan dan tulis, yang tercakup dalam mata pelajaran lain di kelas XI	4.8.1 Mengetahui makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan analytical exposition lisan dan tulis, terkait yang tercakup dalam mata pelajaran lain di kelas XI 4.8.2 Mengidentifikasi makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan analytical exposition lisan dan tulis, terkait yang tercakup dalam mata pelajaran lain di kelas XI 4.8.3 Mengulas makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan analytical exposition lisan dan tulis, terkait yang tercakup dalam mata pelajaran lain di kelas XI 4.8.4 Mendemonstrasikan Mengetahui makna secara kontekstual terkait fungsi sosial, struktur teks, dan unsur kebahasaan analytical exposition lisan dan tulis, terkait yang tercakup dalam mata pelajaran lain di kelas XI

C. Tujuan Pembelajaran

Setelah mengikuti proses pembelajaran, peserta didik diharapkan dapat:

- Diberikan sebuah text siswa dapat mengetahui isi atau makna dari text analytical exposition
- Diberikan sebuah text siswa mampu mengidentifikasi main idea pada text analytical exposition
- Diberikan sebuah text siswa mampu Mereview pesan dari text analytical exposition menggunakan bahasa sendiri
- Diberikan sebuah text siswa mampu mendemonstrasikan text analytical exposition kepada antar teman melalui sharing dan diskusi (saling mengkoreksi)

D. Materi Pembelajaran

 Fungsi Sosial Menjelaskan suatu hal penting atau issue yang sedang hangat dengan diperkuat oleh argumen

- Struktur Teks
 Dapat mencakup:
 - Thesis
 - Argument
 - reiteration
- Unsur Kebahasaan
- Menggunakan simple present
- Menggunakan internal conjuction
- Menggunakan causal conjuction
- Topik
 Analytical Exposition text
- Materi

Antibiotic is a drug produced by certain microbes. Antibiotics destroy other microbes that damage human tissues. They are used to treat a wide variety of diseases, including gonorrhea, tonsillitis, and tuberculosis. Antibiotics are sometimes called "Wonder drugs" because they can cure diseases such as meningitis, pneumonia, and scarlet fever. But, when the antibiotics are overused or misused, these drugs make a person sensitive being attacked by a superbug.

Antibiotics do not always distinguish between harmless and dangerous microbes. If a drug destroys too many harmless microorganism, the pathogenic ones (the dangerous microbes) will have a greater chance to multiply. This situation often leads to the development of a new infection called suprainfection. Extensive use of some antibiotics may damage organs and tissues. For example, streptomycin, which is used to treat tuberculosis, has caused kidney damage and deafness.

Resistance to antibiotics may be ecquired by pathogenic microbes. The resistant microbes transfer genetic material to non-resistant microbes and cause them to become resistant. During antibiotic treatment, non-resistant microbes are destroyed, but resistant types survive and multiply. To avoid the side effect of antibiotics, you'd better not urge your doctor to prescribe antibiotics. Keep in mind that antibiotics are only useful for bacterial infections and have no effect on viruses, so they cannot be used for chicken pox, measles, and other viral diseases.

D. Metode Pembelajaran

1) Pendekatan : Saintific

2) Model Pembelajaran : Discovery Learning

3) Metode : REAP

E. Media Pembelajaran

- 1. Media
 - Worksheet atau lembar kerja (siswa)
 - ❖ Lembar penilaian
- 2. Alat/Bahan
 - Penggaris, spidol, papan tulis

F. Sumber Belajar

❖ Buku Penunjang Kurikulum 2013 Mata Pelajaran Bahasa Inggris Kelas XI, Kemendikbud, Revisi Tahun 2017, Internet.

G. Rubrik Penilaian Soal essay

• Ketentuan penilaian

Skor yang diperoleh	X 100	
Skor maksimum	A 100	

Depdikbud (2005:27)

No	Criteria	Score
1.	The meaning and structure are correct	4
2.	The meaning is correct and some errors of structure	3
3.	Some errors of meaning and structure	2
4.	The meaning and stucture are incorrect	1 1
5.	No answer	0

Gresik, Oktober 2019

Mengetahui,

English Teacher Researcher

Dra. Elies Setyo Rini Aisyatul Bararah

NIG. 107 021 1762 NIM. 14431032

microbes that damage human tissues. They are	used to treat a wide variety of diseases,
including gonorrhea, tonsillitis, and tuberculosi	is. Antibiotics are sometimes called
"Wonder drugs" because they can cure disease	s such as meningitis, pneumonia, and
scarlet fever. But, when the antibiotics are over	rused or misused, these drugs make a
person sensitive being attacked by a superbug.	
Antibiotics do not always distinguish bet	ween harmless and dangerous
microbes. If a drug destroys too many harmless	
(the dangerous microbes) will have a greater ch	
leads to the development of a new infection cal	
some antibiotics may damage organs and tissue	
used to treat tuberculosis, has caused kidney da	image and deafness.
Desistance to antibiotics may be acquired l	ay nothe gania migrakas. The registent
Resistance to antibiotics may be ecquired by	
microbes transfer genetic material to non-resist	
become resistant. During antibiotic treatment, i	
but resistant types survive and multiply. To avo	
better not urge your doctor to prescribe antibior	
only useful for bacterial infections and have no	
used for chicken pox, measles, and other viral of	diseases.
	439
Step 1 : Read	* * //
Instructions: Read the text using silent reading	
	1 1 //
// GRES	
	- //
Step 2 : Encode	
Instructions: students have to write down the main idea a	nd the difficult words
Main idea:	Difficult words:

Antibiotic is a drug produced by certain microbes. Antibiotics destroy other

Read the text below and follow the instructions of every step!

Name:

Class:

Instructions : st	udents have to write down the	message of the text		
	9 1/2		15	

Step 4 : Ponder

Instructions : students have to discuss also demonstrate what they have got to her/his chairmate and sharing.

Please answer the following question based on the text above!

- 1. What is the functions of antibiotics?
- 2. Whay is antibiotics also called as wonder drugs?
- 3. Why resistance of antibiotic can be happened?
- 4. What will be happened if antibiotic used so extensive?
- 5. How can we avoid the side effect of antibiotics?

Name:	
Class:	

Read the text below then answer the following questions of the step!

The Importance of Breakfast

Why is breakfast important? "Breakfast like a King, Lunch like a Prince and Dine like a Pauper" It's a well known phrase, but do you follow it? Breakfast provides many benefits to our health and wellbeing. Breakfast provides the body and brain with fuel after an overnight fast – that's where its name originates, breaking the fast! Without breakfast you are effectively running on empty, like trying to start the car with no petrol! Breakfast support cognitive function. Breakfast also restores glucose levels, an essential carbohydrate that is needed for the brain to function. Breakfast provides energy, studies have shown how eating breakfast can improve memory and concentration levels and it can also make us happier as it can improve mood and lower stress levels.

Breakfast provides energy needs. People's energy needs vary depending on activity levels and life stage but typically men require more energy than women. Growing children require a lot of energy, as an example boys aged 7-10 years should consume approximately 1970 kcals per day, and girls aged 7-10 years should consume approximately 1740 kcals. So, breakfast is very important and really affect our daily activity.

Step 1: Predict

Instructions: in this step the students have to make predicted questions, minimally two questions using one or two or more keywords like discuss, critisize, compare, explain, contrast, based on the text above!

1.

2.

Step 2 : Organize

Instruction: students have to summarize the text by using their own language which is the summary cover the generic sturcture of analytical exposition text.				

Step 3 : Rehearse	
Instruction: the students have to read the result of their summarizing related with the structure	e generic
Step 4 : Practice	
Instruction: the students have to answer their own predicted question based on the texture of the students have to answer their own predicted question based on the texture of the students have to answer their own predicted question based on the texture of the students have to answer their own predicted question based on the texture of the students have to answer their own predicted question based on the texture of the students have to answer their own predicted question based on the texture of the students have to answer their own predicted question based on the texture of the students have to answer their own predicted question based on the texture of the students have	xt!

Step 5 : Evaluate

Instruction : the students have to evalute their own self using checklist that provided by the researcher to know how far they understanding the text.

SELF CORRECTION CHECKLIST		
QUESTION	V	X
1.Did i directly answer the question?		
2. Have you answer the question relevant with the text?		
3. Did my answer organize the major points so that these were obvious to the reader?		
4. do you feel difficult to understand the text?		

5. are you ready for the next exercise about this	
material?	
	i

