BAB III

ANALISIS DAN PERANCANGAN SISTEM

Analisis dan perancangan sistem bertujuan untuk memberikan gambaran umum mengenai aplikasi yang akan dibuat dan menunjang pembuatan aplikasi sehingga kebutuhan yang digunakan dalam pembuatan aplikasi tersebut dapat diketahui.

3.1. Analisis Sistem

Metode analisis sistem yang digunakan dalam perencanaan dan perancangan sistem aplikasi pengolahan citra untuk mendeteksi *optic disk* pada citra fundus adalah aplikasi perangkat lunak berorientasi objek, yaitu mengatasi masalah dengan cara melakukan perencanaan (planning) dan analisis perancangan serta implementasi sistem.

Citra fundus yang dihasilkan oleh kamera fundus akan diperiksa dokter ahli untuk mendeteksi *optic disk*. Dokter ahli membutuhkan waktu yang lama karena indentifikasi dilakukan dengan pengamatan langsung. Sehingga dibutuhkan metode yang dapat membantu dokter mendeteksi ukuran *optic disk* pada foto fundus sehingga dapat mendiagnosis dengan cepat dan akurat.

Dalam aplikasi ini, untuk menentukan segmentasi *optic disk* terdapat dua tahap yaitu preprocessing dan segmentasi. Pada tahap preprocessing merubah citra RGB menjadi citra *grayscale*. Kemudian melakukan penghapusan pembuluh darah. Pada tahap dua dilakukan proses segmentasi dengan menentukan nilai ambang segmentasi.

3.2. Hasil Analisis

Hasil dari analisis sistem yang telah dilakukan, dibutuhkan suatu metode untuk mendeteksi *Optic Disk* pada citra fundus. Selanjutnya diperlukan suatu data pembelajaran yang data tersebut diperoleh dari hasil pengambilan citra fundus yang bersumber dari *database* MESSIDOR dan kemudian dilakukan preprocessing citra, dan hasil dari preprocessing citra akan dilakukan ekstraksi fitur, hasil yang didapat dari ektraksi fitur akan dilakukan proses segmentasi.

Tahap preprocessing citra yang dilakukan adalah merubah citra RGB menjadi citra grayscale menggunakan ekstraksi fitur berbasis Principal Component Analysis (PCA), nilai grayscale PCA diambil dari nilai eigen vector berdasarkan eigen value yang terbesar. Hasil citra grayscale PCA yang didapat memiliki kontras yang lebih baik dan tajam dalam mempresentasikan objek optic disk. Kemudian dilakukan penghapusan pembulu darah dengan menggunakan Morphology Operator. Pada tahap segmentasi menggunakan metode *Maximum Entropy* untuk menentukan nilai ambang segmentasi.

Perencanaan dan perancangan pembuatan sistem meggunakan bahasa pemrograman MATLAB R2015b sebagai perangkat lunak yang akan membantu peneliti dalam menyelesaikan masalah tersebut

3.2.1. Deskripsi Sistem

Sub bab ini membahas tentang proses awal hingga dapat menyelesaikan permasalahan yang dibuat. Gambaran dari perancangan sistem adalah sebagai berikut :

Gambar 3.1 Gambaran Umum Perancangan Sistem

Gambar 3.1 mengambarkan alur sistem yang akan dibuat dengan menggunakan objek citra dari *database* Messidor berukuran 2240 x 1488 piksel dengan mengunakan ekstension .tif. Citra tersebut digunakan untuk pemrosesan data mengunakan pengolahan citra yang memanfaatkan bahasa pemrograman MATLAB R2015b sebagai media pengolahan citra digital. Kemudian dilakukan proses analisis citra untuk menghasilkan objek yang dapat diidentifikasi sesuai dengan syarat dan kondisi yang telah ditentukan sebelumnya. Hasil yang didapat dari hasil analisis citra akan dilakukan proses segmentasi citra fundus mengunakan metode *Maximum Entropy* sehingga didapatkan hasil segmentasi.

3.2.2. Perancangan Sistem

Flowchart berfungsi untuk memberikan gambaran tentang program apikasi yang akan dibuat pada penelitian. Pada bagian ini dijelaskan flowchart dalam pembuatan sistem aplikasi untuk segmentasi *optic disk* citra fundus.

Gambar 3.2 Flowchart Perancangan Sistem

Penjelasan flowchart dari masing-masing tahapan adalah sebagai berikut :

a. Proses Preprocessing

Tahap *preprocessing* adalah tahapan yang dilakukan sebelum data digunakan. Tahap *preprocessing* merupakan untuk perbaikan citra. Di *preprocessing* terdapat 2 tahap yang dilakukan, yaitu :

1. Citra grayscale menggunakan Principal Component Analysis (PCA)

Proses untuk meendapatkan nilai *grayscale* bisa juga dilakukan dengan banyak metode salah satunya *Principal Component Analysis (PCA)* merupakan suatu teknik yang digunakan untuk merubah citra RGB menjadi citra *grayscale*.. Dalam proses PCA tentu berbeda dengan proses yang dijelaskan sebelumnya, pada proes sebelumya nilai *grayscale* didapat dengan menghitung nilai rata dari keseluruhan *channel*. Proses PCA menghitung nilai *covarian, eigen value,* dan *eigen vector*. Untuk citra *grayscale* didapatkan dengan Persamaan 2.6. Hasil akhir dari proses PCA berupa nilai *eigen value* dan *eigen vector*. Nilai dari *eigen vector* akan diurutkan berdasarkan dari *eigen value* berdasarkan nilai yang terbesar. Nilai *grayscale* diperoleh dari perkalian nilai RGB dan *eigen vector* yang telah diurutkan. Citra *grayscale* dari proses PCA dinilai lebih tajam dan lebih baik untuk mendeteksi *optic Disk*.

2. Morphology Operator

Operasi morfologi digunakan untuk mempermudah proses segmentasi. Morfologi merupakan operasi pemrosesan citra berdasarkan dari sudut dan bentuk. *Structuring element* adalah matrik elemen dengan ukuran dan bentuk tertentu. Citra baru didapat dari proses translasi *structuring element* terhadap citra asli, citra baru mempunyai ukuran yang sama seperti citra asli serta untuk menghapus *blood vessel. Morfologi operator* mempunyai operasi dasar yaitu dilasi dan erosi yang sering digunakan untuk memperbaiki citra. Operasi dilasi menebalkan objek pada citra. Sedangkan operasi erosi digunakan untuk menipiskan objek pada citra. Proses dilasi dan erosi dijelaskan pada bab sebelumnya. Morfologi operator digambarkan dalam bentuk *flowchart* pada gambar 3.3.

Gambar 3.3 Flowchart Morphology Operator

b. Proses Segmentasi

Untuk Proses Segmentasi menggunakan Metode *Maximum Entrophy. Maximum Entropy* pada sistem ini digunakan untuk melakukan segmentasi pada citra fundus yang sudah di proses dengan *preprocessing*. Hasil yang didapatkan dari proses ini yaitu mendapatkan citra biner yang nilai pikselnya berupa 0 dan 1. Berikut ini adalah contoh gambar dari hasi segmentasi menggunakan *Maximum Entropy tresholding*.

c. Perhitungan Akurasi

Untuk perhitungan tingkat akurasi, digunakan Paradox Accuracy. Paradox accuracy digunakan untuk menghindari kenaikan kinerja pada data yang tidak seimbang. Sensitivity dituliskan dengan Persamaaan 2.20, *specificity* dituliskan pada Persamaan 2.21 dan Akurasi dituliskan pada Persamaan 2.22.

Gambar 3.4. Flowchart Perhitungan Akurasi

Keterangan :

Setiap piksel pada citra segmentasi dan citra *Groundtruth*, dilakukan pengecekan piksel dengan membandingkan sesuai dengan posisi *x*,*y* pada masing-masing citra. Pengecekan diawali dengan piksel pada citra *Groundtruth* dan citra segmentasi jika bernilai 1, maka TP ditambah 1. Jika bukan, proses dilanjutkan ke kondisi selanjutnya. Jika piksel pada citra *Groundtruth* dan citra segmentasi bernilai 0, maka TN ditambah 1. Jika bukan, proses dilanjutkan ke kondisi selanjutnya. Jika piksel pada citra *Groundtruth* bernilai 0 dan citra segmentasi bernilai 1, maka FP ditambah 1. Jika bukan, proses dilanjutkan ke kondisi selanjutnya. Yaitu kondisi di saat citra *Groundtruth* bernilai 1 dan citra segmentasi bernilai 0, maka FN ditambahkan.

Setelah melakukan pengecekan pada seluruh piksel, didapati hasil akhir dari TP, TN, FP, dan FN dimasukkan pada rumus *specificity, sensitifity*, dan *paradox accuracy*.

3.3 Representasi Model

Data yang digunakan dalam penelitian adalah data 40 citra fundus RGB dan 40 citra groundtruth dari *database Messidor*. 30 citra fundus akan dijadikan data latih. Dalam aplikasi ini, ada beberapa tahap untuk menentukan segmentasi *optic disk* yaitu preprocessing, segmentasi dan perhitungan akurasi.

MUI

3.3.1. Proses Preprocessing

Tahap *preprocessing* adalah tahapan yang dilakukan sebelum data digunakan. *preprocessing* dimulai dengan data Citra RGB berukuran 2240 x 1488 piksel. Untuk mempermudah penjelasan contoh perhitungan akan dilakukan *crop* citra RGB menjadi berukuran 9 x 8 piksel.

Gambar 3.5 Citra RGB Fundus

Gambar 3.6 Citra RGB 9 x 8 piksel

Citra RGB kemudian dikonversi menjadi *grayscale* untuk mendapatkan citra gray (abu-abu). Dengan proses *grayscaling* ini dapat mempermudah untuk memproses gambar lebih lanjut. Di *preprocessing* terdapat 2 tahap yang dilakukan, yaitu :

1. Principal Component Analysis (PCA)

Pada proses *Principal Component Analysis (PCA)* data *input* yaitu citra RGB. Langkah pertama yaitu mencari nilai rata-rata dari masing-masing *channel* RGB dengan Persamaan 2.2.

2

	No	R	G	В	
	1	193	122	35	
\square	2	192	123	37	
	3	196	123	37	
	4	208	130	33	
- li	5	218	138	36	-
5	6	228	143	39	
	7	245	155	46	\leq
4	8	254	164	50	
1 .	9	255	167	48	
	10	193	117	35	
$^{\prime\prime}$	11	198	120	35	
	12	206	123	34	
	13	217	133	36	7
	14	232	145	40	
	15	245	154	42	
	16	254	161	48	
	17	255	166	53	
	18	255	168	55	
	19	194	105	31	
	20	203	109	33	
	21	211	114	33	

Tabel 3.1 Tabel Rata-rata Tiap Channel

	22	221	123	34	
	23	240	138	39	
	24	253	153	46	
	25	255	166	49	
	26	255	173	54	
	27	255	178	59	
	28	200	107	30	
	29	211	110	35	
	30	220	112	38	
	31	228	112	34	
	32	237	119	35	
7	33	247	130	40	
	34	255	148	44	
1	35	255	166	50	
1	36	255	179	53	1
5	37	213	127	38	
	38	221	130	36	\leq
2	39	231	131	38	
	40	238	130	41	1
2	41	241	128	40	
Ν	42	249	129	39	
	43	255	134	43	
	44	255	138	43	
	45	255	151	47	
	46	224	134	37	
	47	237	145	44	
	48	247	152	46	
	49	253	157	47	
	50	254	159	47	
	51	255	164	50	
	52	255	159	59	

52	255	1/15	57
22	200	143	57
54	255	135	51
55	232	140	41
56	244	150	44
57	252	158	43
58	255	163	45
59	255	173	51
60	255	186	60
61	255	189	69
62	255	181	71
63	255	164	70
64	242	148	39
65	250	155	43
66	253	159	45
67	255	169	47
68	255	182	58
69	255	188	64
70	255	190	67
71	255	191	67
- 72	255	192	73
Average	238.4028	147.5	45.5

Selanjutnya menghitung matrik *zeromean* didefinisikan dengan Persamaan 2.2.

Tabel	3.2	matrik	zeromean
-------	-----	--------	----------

No	R	G	В
1	-45.4028	-25.5	-10.5
2	-46.4028	-24.5	-8.5
3	-42.4028	-24.5	-8.5
4	-30.4028	-17.5	-12.5
5	-20.4028	-9.5	-9.5

	6	-10.4028	-4.5	-6.5	
	7	6.597222	7.5	0.5	
	8	15.59722	16.5	4.5	
	9	16.59722	19.5	2.5	
	10	-45.4028	-30.5	-10.5	
	11	-40.4028	-27.5	-10.5	
	12	-32.4028	-24.5	-11.5	
	13	-21.4028	-14.5	-9.5	
	14	-6.40278	-2.5	-5.5	
	15	6.597222	6.5	-3.5	
	16	15.59722	13.5	2.5	
7	17	16.59722	18.5	7.5	
/	18	16.59722	20.5	9.5	
1	19	-44.4028	-42.5	-14.5	
li	20	-35.4028	-38.5	-12.5	4
5	21	-27.4028	-33.5	-12.5	
	22	-17.4028	-24.5	-11.5	\leq
4	23	1.597222	-9.5	-6.5	
1	24	14.59722	5.5	0.5	
	25	16.59722	18.5	3.5	1
Ν	26	16.59722	25.5	8.5	
N	27	16.59722	30.5	13.5	
	28	-38.4028	-40.5	-15.5	
	29	-27.4028	-37.5	-10.5	
	30	-18.4028	-35.5	-7.5	
	31	-10.4028	-35.5	-11.5	
	32	-1.40278	-28.5	-10.5	
	33	8.597222	-17.5	-5.5	
	34	16.59722	0.5	-1.5	1
	35	16.59722	18.5	4.5	1
	36	16.59722	31.5	7.5	1

	37	-25.4028	-20.5	-7.5	
	38	-17.4028	-17.5	-9.5	
	39	-7.40278	-16.5	-7.5	
	40	-0.40278	-17.5	-4.5	
	41	2.597222	-19.5	-5.5	
	42	10.59722	-18.5	-6.5	
	43	16.59722	-13.5	-2.5	
	44	16.59722	-9.5	-2.5	
	45	16.59722	3.5	1.5	
	46	-14.4028	-13.5	-8.5	
	47	-1.40278	-2.5	-1.5	
1	48	8.597222	4.5	0.5	
	49	14.59722	9.5	1.5	
1	50	15.59722	11.5	1.5	
i	51	16.59722	16.5	4.5	4
V	52	16.59722	11.5	13.5	
	53	16.59722	-2.5	11.5	\leq
4	54	16.59722	-12.5	5.5	
1	55	-6.40278	-7.5	-4.5	1
2.	56	5.597222	2.5	-1.5	
\sum	57	13.59722	10.5	-2.5	
N	58	16.59722	15.5	-0.5	
	59	16.59722	25.5	5.5	r
	60	16.59722	38.5	14.5	
	61	16.59722	41.5	23.5	
	62	16.59722	33.5	25.5	
	63	16.59722	16.5	24.5	
	64	3.597222	0.5	-6.5	
	65	11.59722	7.5	-2.5	
	66	14.59722	11.5	-0.5	
	67	16.59722	21.5	1.5	

68	16.59722	34.5	12.5
69	16.59722	40.5	18.5
70	16.59722	42.5	21.5
71	16.59722	43.5	21.5
72	16.59722	44.5	27.5

Langkah berikutnya mencari matrik *covarian*. Adapun rumus untuk mencari matrik covarian dapat dilihat dengan Persamaan 2.3.

	432.5820	390.2042	159.6690
Matrik Covarian =	= 390.2042	558.7887	222.3239
XAS	159.6690	222.3239	112.5070

Selanjutnya menghitung *eigen value* dan *eigen vector* didefinisikan dengan Persamaan 2.4 .

	-0.0110	0.7906	0.6122
eigen value =	= 0.3886	-0.5608	0.7311
	-0.9213	-0.2459	0.3011
		3	

	20.6406	0	0
eigen vector =	0	106.1502	0
V AB	= 0	0	977.0869

Langkah berikutnya Pilih Eigen Vector Berdasarkan nilai Eigen Value terbesar

 $eigen \ value \ terbesar = \begin{array}{c} 0.6020\\ 0.7965\\ -0.0554 \end{array}$ $eigen \ vector \ terbesar = \begin{array}{c} 0\\ 0\\ 977.0869 \end{array}$

Pada tahap terakhir yaitu melakukan konversi untuk merubah citra RGB ke *Grayscale PCA* ditulis pada Persamaan 2.6.

Gambar 3.7 Citra PCA Fundus

2. Operasi Morfologi

Pada operasi morfologi menggunakan Operasi Morfologi – Closing. Dimana citra terlebih dahulu dilakukan dilasi yang kemudian dilanjutkan dengan erosi. Closing bertujuan untuk mengisi lubang kecil pada objek, menggabungkan objek yang berdekatan. Operasi Morfologi – Closing ditulis pada Persamaan 2.9.

Gambar 3.8 Hasil Dilasi

3.3.2 Proses Segmentasi

Dalam metode *Maksimum Entropy* untuk mendapatkan nilai biner pada suatu citra diperlukan nilai ambang atau *tresholding*. Nilai ambang ini digunakan untuk membandingkan dengan piksel citra yang ada, sehingga didapatkan citra dengan nilai piksel biner. Pertama mencari histogram pada suatu citra yang diinginkan. Kemudian mencari nilai normalisasi histogram h(i) pada citra yang diinginkan, nilai *i* didapatkan dari nilai 0 sampai 255. Selanjutnya mencari *Entropy* atau range dari piksel – piksel nilai problabilitas rendah dan tinggi. *Maksimum Entropy* didapatkan dengan memaksimalkan dari *Entropy* dari piksel dengan problabilitas nilai *histogram* berwarna putih dan hitam dengan persamaan 2.14.

3.3.3 Perhitungan Akurasi

Citra hasil segmentasi akan dibandingkan dengan citra *Groundtruth* untuk mendapatkan tingkat akurasi. Untuk memperjelas letak kesalahan (*error*) pada citra hasil, citra hasil dibandingkan dengan *Groundtruth*. Citra hasil ditandai dengan warna sebagai tanda bahwa pada titik tersebut letak *error* dari citra hasil.

Gambar 3.10. (a) Citra Hasil Segmentasi (b) Citra Groundtruth

Gambar 3.10 (a) merupakan citra hasil segmentasi dan Gambar 3.10. (b) merupakan citra *Groundtruth*. Citra hasil dibandingkan dengan citra *Groundtruth* untuk mendapatkan tingkat akurasi dari citra hasil. Untuk memperjelas letak kesalahan (*error*) pada citra hasil, citra hasil dibandingkan dengan *Groundtruth*. Citra hasil ditandai dengan warna sebagai tanda bahwa pada titik tersebut letak *error* dari citra hasil. Citra hasil dengan *error* dapat dilihat pda Gambar 3.11.

Gambar 3.11. Citra Hasil dengan Error Color

Pada Gambar 3.11, citra yang ditandai dengan TP merupakan optic Disk yang benar terdeteksi sebagai optic Disk. Tanda TN benar merupakan background yang terdeteksi sebagai background. Tanda FP merupakan background yang salah terdeteksi sebagai optic Disk. Tanda FN merupakan optic Disk yang salah terdeteksi sebagai background.

				A. A.
Tabel 3.3	Hasil dari	perhitungan	akurasi	data latih

No	Citra	Akurasi	sensitify	specificiy	Balance Acurate
1	•	99.74566	79.86294	100	89.93147
2	•	99.61316	98.99679	99.61832	99.30755
3	٠	99.72535	97.97921	99.74572	98.86247
4	•	99.10814	100	99.10802	99.55401

5	٠	99.51462	99.37888	99.51491	99.4469
6	۲	99.60218	98.21002	99.60607	98.90805
7	٠	99.60051	99.87937	99.59896	99.73917
8	•	99.43006	97.0297	99.43979	98.23475
9	•	99.73301	81.19137	100	90.59568
10	•	99.87316	89.71758	99.99798	94.85778
11		99.43006	99.62264	99.42972	99.52618
12	۲	99.54725	99.29329	99.54845	99.42087
13	۲	99.52627	99.58391	99.526	99.55495

14	•	99.77495	82.31755	100	91.15878
15	۲	99.46502	98.60573	99.46873	99.03723
16		99.04189	50.04897	99.20899	74.62898
17	•	99.42507	91.6996	99.4381	95.56885
18		99.06353	68.83117	99.07128	83.95123
19	•	99.81956	97.39229	99.84114	98.61671
20	•	99.71636	81.56243	100	90.78122
21		99.84453	90.18824	99.98312	95.08568
22		99.75065	88.04554	99.83338	93.93946

23	•	99.84453	99.244	99.8523	99.54815
24		99.07052	100	99.06556	99.53278
25	•	99.84786	89.37589	99.99629	94.68609
26	•	99.84653	89.34293	99.99932	94.67113
27		97.65134	34.69767	99.98792	67.3428
28	•	99.90812	94.5459	99.98245	97.26417
29	•	99.86018	92.44103	99.94812	96.19458
30	٠	99.75898	94.00579	99.80568	96.90573

3.4. Desain Antarmuka

Desain antarmuka digunakan untuk menampilakn citra yang akan diproses dalam sistem yang akan dibuat. Desain antarmuka tersebut dapat dililhat dalam tahapan berikut :

3.4.1. Menu Utama

Menu ini terdapat tampilan tombol yangberfungsi untuk memproses objek. Terdapat menu :

- a. Proses pengujian
- b. Keluar

3.4.2. Pengujian

Menu pengujian berfungsi untuk segmentasi optic disk.

Gambar 3.13 Desain menu pengujian

Pada menu ini terdapat bagian-bagian yang digunakan untuk pemrosesan, bagian-bagian tersebut adalah :

- 1. Pada kiri atas terdapat tombol pilih file RGB, tombol ini digunakan untuk memilih file RGB yang akan kita proses.
- Menentukan jumlah nilai random yang akan kita gunakan dengan menggunakan slider pada kolom random (%), setelah nilai random terpilih terdapat tombol *grayscale* pca yang digunakan untuk merubah sesuai parameter random yang kita pilih.
- 3. Pada morfologi operator terapat tombol set nilai strell yang digunakan.
- 4. Terdapat field hasil tresloding dari metode maximun entrophy.
- 5. Pada tombol terakhir yaitu segmentasi yang menampilkan marker error dari proses yang telah dilakukan.
- 6. Terdapat field hasil perhitungan akurasi, specifity, sensifity, dan penggunaan nilai eigen value dan eigen vector.
- 7. Terdapat panel menampilkan citra dari masing-masing proses yaitu :
- a. Tampilan citra fundus RGB,
- b. Tampilan citra grayscale menggunakan nilai rata-rata channel
- c. Tampilan citra grayscale PCA.
- d. Tampilan hasil citra morfologi operator.
- e. Tampilan hasil citra dengan error marker.

3.5. Skenario Pengujian

Tahapan dimulai dengan menginputkan citra RGB fundus mata dan *Groundtruth*, selanjutnya dilakukan proses preprocessing citra RGB dirubah menjadi citra grayscale menggunakan ekstraksi fitur berbasis Principal Component Analysis (PCA). Kemudian dilakukan penghapusan pembuluh darah dengan menggunakan Morphology Operator. Pada tahap segmentasi menggunakan metode Maximum Entropy untuk menentukan nilai ambang segmentasi. Lalu dilakukan perhitungan akurasi untuk mengetahui tingkat

keberhasilan segmentas. Pertama data dibagi menjadi 2 bagian, data latih dan data uji. Adapun rincian data dan sekenario pengujian sebagai erikut :

- 1. Pada penelitan skripsi ini citra yang digunakan 40 citra, yaitu:
 - a. Terdapat 30 citra latih.
 - b. Terdapat 10 data citra uji.
- 2. Pada data latih dan data uji dilakukan proses pre-prosesing dengan merubah citra RGB ke citra Gray. Kemudian dilakukan penghapusan pembuluh darah. Selanjutnya akan ditentukan nilai ambang segmentasi untuk tahap segmentasi.
- 3. Langkah selanjutnya yaitu mencari nilai akurasi untuk mengetahui tingkat keberhasilan segmentasi dari program yang telah dibuat, citra segmentasi dibandingkan dengan citra *Groundtruth* dan menghitung nilai akurasinya. Untuk perhitungan tingkat akurasi, akan digunakan *balance accuracy* untuk menghindari kenaikan kinerja pada data yang tidak seimbang. Rumus untuk menghitung *balance accuracy* adalah sebagi berikut :

Balance Accuracy = SENSITIVITY + SPECIFICITY 2 CRES