Firdaus, Muhammad Iqbal (2023) Implementasi Algoritme K-Means++ Untuk Clustering Prioritas Pelayanan Kesehatan Peserta Posyandu Lansia (“Studi Kasus Posyandu Lansia Desa Tirem”). undergraduate thesis, Universitas Muhammadiyah Gresik.
|
Text
LEMBAR KEASLIAN.pdf Download (330kB) | Preview |
|
|
Text
LEMBAR PENGESAHAN.pdf Download (648kB) | Preview |
|
|
Text
HALAMAN PERSETUJUAN PUBLIKASI TUGAS.pdf Download (385kB) | Preview |
|
|
Text
HALAMAN JUDUL.pdf Download (358kB) | Preview |
|
|
Text
BAB I.pdf Download (121kB) | Preview |
|
|
Text
BAB II.pdf Download (363kB) | Preview |
|
|
Text
BAB III.pdf Download (484kB) | Preview |
|
Text
BAB IV.pdf Restricted to Repository staff only Download (1MB) |
||
|
Text
BAB V.pdf Download (100kB) | Preview |
|
|
Text
DAFTAR PUSTAKA.pdf Download (222kB) | Preview |
|
|
Text
LAMPIRAN.pdf Download (236kB) | Preview |
Abstract
Posyandu lansia Desa Tirem merupakan salah satu pos pelayanan terpadu untuk warga lansia, warga lansia bisa mendapatkan pelayanan kesehatan secara tepat. Namun pelayanan kesehatan posyandu lansia Desa Tirem masih dilakukan secara bergiliran berdasarkan kedatangan awal peserta posyandu lansia. Sehingga model pelayanan ini memiliki risiko terhadap peserta posyandu lansia yang memiliki riwayat penyakit kronis serta tingkat keparahan penyakit yang harus segera dilakukan penanganan secara cepat. Oleh karena itu, perlu dilakukan analisis data kesehatan peserta posyandu lansia Desa Tirem untuk mengetahui prioritas pelayanan kesehatan peserta posyandu lansia. Analisis data tersebut bisa dilakukan dengan berbagai macam cara, salah satunya yaitu menggunakan teknik Data Mining metode Clustering dengan menggunakan Algoritme K-Means++ yang merupakan improvisasi K-Means dengan harapan dapat memberikan hasil yang lebih baik untuk performa Clustering yang dihasilkan. Hasil pengujian black box telah berhasil dilakukan dengan keterangan success sebesar 100%. Hasil evaluasi performa menggunakan DBI didapatkan hasil 0,7706. Dan hasil uji validitas menggunakan Silhouette Coefficient didapatkan hasil 0,2243.
Item Type: | Thesis (undergraduate) |
---|---|
Uncontrolled Keywords: | Algoritme K-Means++; Clustering; Data Mining; Pelayanan Kesehatan |
Subjects: | Engineering > Informatics Engineering Engineering |
Divisions: | Faculty of Engineering > Informatics Engineering Study Program |
Depositing User: | Muhammad Iqbal Firdaus |
Date Deposited: | 13 Nov 2023 22:58 |
Last Modified: | 13 Nov 2023 22:58 |
URI: | http://eprints.umg.ac.id/id/eprint/9103 |
Actions (login required)
View Item |