PERAMALAN TRAFIK INTERNET 1 TAHUN MENDATANG MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION DI KECAMATAN LAMONGAN.

Nuryansyah, Sandy Akbar Maulana (2020) PERAMALAN TRAFIK INTERNET 1 TAHUN MENDATANG MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION DI KECAMATAN LAMONGAN. undergraduate thesis, Universitas Muhammadiyah Gresik.

[img]
Preview
Text
Halaman Pernyataan.pdf

Download (49kB) | Preview
[img]
Preview
Text
Halaman Judul.pdf

Download (185kB) | Preview
[img]
Preview
Text
Bab 1.pdf

Download (39kB) | Preview
[img]
Preview
Text
Bab 2.pdf

Download (436kB) | Preview
[img]
Preview
Text
Bab 3.pdf

Download (147kB) | Preview
[img] Text
Bab 4.pdf
Restricted to Repository staff only

Download (999kB)
[img]
Preview
Text
Bab 5.pdf

Download (30kB) | Preview
[img]
Preview
Text
Daftar Pustaka.pdf

Download (130kB) | Preview
[img]
Preview
Text
Lampiran.pdf

Download (85kB) | Preview
[img]
Preview
Text
Lembar Pengesahan.pdf

Download (272kB) | Preview
[img]
Preview
Text
Lembar Persetujuan.pdf

Download (246kB) | Preview

Abstract

Peramalan merupakan suatu dugaan terhadap permintaan yang akan datang berdasarkan pada beberapa variabel peramal, sering berdasarkan data deret waktu historis.Seiring dengan berkembangnya teknologi yang pesat, teknologi komunikasi memiliki peran penting bagi setiap individu di dunia karena manusia adalah makhluk sosial sehingga manusia perlu mengikuti teknologi komunikasi, khususnya teknologi komunikasi seluler. Penelitian ini bertujuan umtuk menentukan rancangan arsitektur jaringan syaraf tiruan backpropagation terbaik dan memprediksi pengguna trafik data internet Telkomsel di area sekitar lamongan untuk 1 tahun mendatang. Penelitian ini menggunakan metode Jaringan Syaraf Tiruan (JST) dengan faktor terkait yaitu data penduduk, data payload 2G, 3G, dan 4G. Pengolahan JST menggunakan software MATLAB. Penerapan metode JST di PT Telkomsel NS Lamongan. menggunakan algoritma Backpropagation. Arsitektur jaringan syaraf tiruan yang digunakan yaitu 4 input layer, 1 output layer, dan 2 hidden layer serta fungsi aktivasi yang digunakan logsig dan purelin. Logsig untuk hidden layer dan purelin untuk output layer. Rancangan arsitektur jaringan syaraf tiruan terbaik untuk peramalan trafik internet adalah jaringan multi layer feedforward dengan struktur neuron 20-1 dengan 2 (dua) hidden layer dan learning rate (lr) yang digunakan 0,1. Nilai MAPE pengujian data sebesar 1.0990% . Hasil Dari penelitian tingkat akurasi dengan dilakukannya beberapa pengujian dapat diperoleh hasil yang tertinggi adalah 99,7454% untuk Iterasi 300, dan 95,1579% untuk 2 node lapisan tersembunyi.

Item Type: Thesis (undergraduate)
Uncontrolled Keywords: Artificial Neural Networks, Data Payload, Backpropagation, MAPE, Accuracy.
Subjects: Engineering > Electronical Engineering
Engineering
Divisions: Faculty of Engineering > Electronical Engineering Study Program
Depositing User: Sandy Akbar Maulana
Date Deposited: 04 Jun 2020 03:35
Last Modified: 08 Jun 2020 05:17
URI: http://eprints.umg.ac.id/id/eprint/3617

Actions (login required)

View Item View Item